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SIMPLIFIED PROCEDURES FOR ESTIMATING FLAPWISE BENDING
MOMENTS ON HELICOPTER ROTOR BILADES

PART I - PROCEDURES AND CHARTS

By Anton J. Landgrebe
United Aircraft Research Laboratories

SUMMARY

Simplified procedures are developed for predicting the flapwise bending
moments acting on low stiffness articulated and hingeless helicopter rotor blades..
It is shown that such moments are basically linear functions of several indepen-
dent rotor parameters and can be computed by transfer function, superposition
techniques. Transfer coefficients relating independent rotor parameters to
harmonics of moment are derived using a computer analysis which numerically
integrates the blade flapwise equation of motion. These coefficients are
presented in the form of design charts for a wide range of blade design parameters
and operating conditions of interest. Detailed procedures for using the charts
in conjunction with the performance charts of NASA CR-114 are deseribed and
illustrated with sample calculations. The accuracy of the method is demonstrated
by several comparisons of bending moment (or stresses) computed from the charts
with full scale rotor experimental results and with results from a more complete
numerical analysis in which chordwise and torsional degrees of freedom are
included. A complementary analysis for predicting closed-form, approximate
expressions for the transfer coefficients is also developed.

The transfer coefficient charts are shown to provide quantitatively accurate
flapwise bending moments for low stiffness articulated and hingeless helicopter
blades at advance ratios from 0.25 to 0.5 and qualitatively accurate results
(useful for preliminary design) for advance ratios above 0.5. In addition, the
approximate analysis is found to provide qualitatively accurate transfer
coefficient expressions which. facilitate analysis of results.

The results are presented in two parts. Part I contains the transfer
coefficient charts and describes their development and application. Part IT*
presents tabulations of transfer coefficients which, if desired, allow the
coefficients to be determined to a greater degree of accuracy than is possible
with the charts of Part I.

¥*
See NASA CR-14h1, 1969.



INTRODUCTION

The design of helicopter rotor blades has always represented a relatively
more difficult structural design problem than that of fixed wings. Several
factors have contributed to this increased difficulty. First, rotor blades,
because of their rotation, operate continuously under nonsteady flow conditions
in forward flight; hence fatigue loads assume proportionately greater impor-
tance. Second, at some flight conditions, the blade bending moments are greatly
influenced by the helical waske of the rotvor. This is particularly true in the
0 to 100 kt speed regime where predicted blade bending moments are less reliable
when such wake effects are neglected. Third, rotor blades have comparatively
small structural stiffness values (for their span), being supported in flight
principally by centrifugal forces. The net bending moments on blades therefore
tend to be relatively small differences of large aerodynamic, inertial, and
centrifugel moments, and accurate representation of such component moments is
mendatory. lLastly, the relative flexibility of blades results in increased
coupling between the airloads and the blades' elastic deflections.

It is not surprising, therefore, that until recently the design of rotor
blades has generelly proceeded on a semi-empirical basis with heavy reliance
placed on flight-test substantiation of designs. However, with the development
of modern computer technology, significant advances have been and are being
made to place the design of rotor blaedes on a firmer analytical foundation. For
example, digital computer programs for predicting the fully coupled response of
an elastic blade at any steady flight condition have been developed which in¢lude
the effects of stall, compressibility, and reverse flow, as well as blade geo-
metry, mass, and stiffness variations. One such program has been developed at
the United Aircraft Research Laboratories and a version of this program is
described in Ref. 1. Correlations of the results of this program with NASA and
Sikorsky Aircraft flight test data indicate that critical blade bending moments
can be computed with reasonable accuracy for those flight conditions which
principally determine blade fatigue life; i.e., steady level flight at speeds
above approximately 100 kts. At low flight speeds, the prediction of accurate
moments is presently hampered by the relatively rudimentary state of the art of
predicting rotor wake effects. Work in this area.is, however, proceeding on
meny fronts (e.g., Refs. 2 through 6).

Unfortunately, lengthy computer programs are not without certain disadvan-
tages. They are not, for example, ideal tools for preliminary design where rapid
methods of reasonable accuracy are desired. In addition, closed-form solutions
are not obtained and, as a result, the mechanisms by which particular design
parameters influence the final results may often be obscured. Consequently, it
would be highly desirable if simplified procedures for predicting bending moments
could be developed which would: (1) be rapid in application; (2) retain much of
the accuracy associated with refined digital methods; and (3) permit identifica-
tion of mechanisms by which various design parameters influence the final results.




Reported herein are the results of an analytical investigation, conducted
at the United Aircraft Research Laboratories, to develop simplified procedures
for estimating flapwise bending moments on helicopter rotor blades. These pro-
cedures are based on transfer function, superposition techniques. The prin-
cipal objectives of this investigation are to:

1. Provide quantitatively accurate bending moment transfer functions
for use (in conjunction with the performance charts of Ref. 7) in
the preliminary design of articulated and hingeless rotors,

2. Develop complementary approximate transfer function expressions to
facilitate qualitative analysis of results, and

3. Demonstrate the utility of the procedures developed through sample -
design applications.

More specifically, the intent of the first objective is to provide a set of
design charts for predicting moments for & wide variety of constant chord rotor
blade configurations operating in steady flight at substantially unstalled
conditions, advance ratios from 0.25 to 1.k, and conventional tip Mach numbers.

Included in Part I of this report are descriptions of (1) transfer function
techniques as applied to the rotor blade bending moment problem, (2) parameters
considered in the analysis, (3) the transfer coefficient sensitivities to
various blade design parameters, (4) transfer coefficient design charts, (5)
sample design applications using the transfer coefficient charts, and (6) an
approximate analysis which can be used to analyze results. Item (4) includes
charts of harmonic transfer coefficients at various blade radial stations for
nine uniform blade designs for articulated and hingeless rotors over an advance
ratio range from 0.25 to 1.4. These charts permit the determination of flapwise
moments for a wide range of uniform blade designs and, as will be described, for
blade designs having a limited degree of nonuniformity. Item (5) includes com-
parisons of flapwise moments (or stresses) predicted by the transfer function
approach with results from experiment and from a more sccurate digital computer
analysis which considers the fully coupled flapwise, chordwise, and torsional
degrees of freedom of the blade. Tabulations of transfer coefficients are
presented in Part IT.

The guidance and assistance provided to this investigation by
Mr. Peter J. Arcidiacono, Chief, Aerodynamics (UARL), is gratefully acknowledged.
This includes the initial formulation of the bending moment transfer function
concept and the derivation of the approximate analysis presented in Appendix A,
Also acknowledged is the assistance provided by Mr. Marvin C. Cheney, Supervisor,
Rotary Wing Technology (UARL), in establishing the techniques to be used for the
hingeless blade analysis. The NASA technical monitor for this investigation was
Mr. John Ward.




SYMBOLS

Section 1ift curve slope, 1/radien

Longitudinal flapping coefficient for the nth harmonic; coefficient

of -cos n ¥ term in Fourier series expansion of blade flap angle
( B ) with respect to the rotor shaft (Eq. (A12)), radians except
where noted in deg

Blade coning angle, radians except where noted in deg

Longitudinal flapping coefficient for the lst harmonic; coefficient

of -cos { term in Fourier series expansion of blade flap angle
with respect to the rotor control axis, deg

Dynamic amplification factor (Eq. (A27))
Blade aspect retio (radius/chord)

Cosine component of first harmonic cyeclic pitch; coefficient of
-cos Y term in Fourier series expansion of the blade pitch
engle with respect to the rotor shaft, radians except where noted
in deg

Number of blades

Lateral flapping coefficient for the nth harmonics coefficient
of -sinn ¢ term in Fourier series expansion of blade flap
angle ( B ) with respect to the rotor shaft (Eq. (Al2)), radians
except where noted in deg

Lateral flapping coefficient for the 1lst harmonic; coefficient
of -sin { term in Fourier series expansion of blade flap angle
with respect to the rotor control axis, deg

Tip loss factor; % of blade radius outboard of which the 1ift
is assumed zero

Sine component of first harmonic cyeclic pitch; coefficient of
-sin ¢ term in Fourier series expansion of the blaede pitch angle
with respect to the rotor shaft, radiens except where noted in
deg

Local value of blade chord, ft; cosine component of nth harmonic
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Blade chord at reference station (0.55 R), ft
Ratio of local chord to chord at reference station, C/Cq

. s i 2
Section drag coefficient, d,‘ir-pu c
Transfer coefficient relating the amplitude of the nth harmonic
bending moment to independent parameter ( ) (See Eq. (17)),
where ( ) can represent 8,5, 8, , A\, or Agy A, B or By,
1/deg except nondimensional for Ac and Ay (does not apply to
Eq. (2))
Rotor drag coefficient, D/p 7R® (QR)Z
Rotor drag coefficient/solidity for minimum % peak-to-peak stress
Rotor 1ift coefficient, L/p7R%(QAR)
Blade lag damper coefficient, ft-1b/rad/sec

2 2

Rotor thrust coefficient, T/p'rrR (.Q,R)
Blade modal constant (Eq. (A7))
Section drag force per unit span, 1b/ft

Rotor drag, 1b

Flap hinge offset ratio; distance from center of rotation to
flap hinge divided by rotor radius

Young's modulus of elasticity, 1b/in.2

Ratio of local flapwise stiffness to reference value, EI/EI,
Nondimensional force coefficients in Eq. (A20)

Frequency parameter, EIo/mo<.QR)2 R?

Frequency parameter corresponding to an advance ratio equal to
or less than 0.5

Frequency parameter corresponding to an advance ratio above 0.5
Acceleration due to gravity, fte/sec

2
Acceleration due to gravity divided by R
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Subscripts denoting flapwise bending modes
Flapwise section area moment of inertia, in.)4
Blade flepping moment of inertia, slug-ft2
Flapwise section area moment of inertia at reference station, in.
Damping constant for ith mode (Eq. (AlLk))
Integrals for ith mode (Eq. (Al3))

Exponent of T

Constants appeering in Eq. (C2) and (CL)

Blade spanwise losding, 1b/in.

Rotor 1lift, 1b

Mess per unit span, slug/ft

Mass per unit span at reference station, slug/ft
Nondimensional mass per unit span, m/mo

Flapwise bending moment, positive when upper surface is in
compression, ft-1b except in.-1lb where noted

Nondimensionel flapwise bending moment, M/(EI/R)

Transfer function relating nondimensional bending moment to
independent parameter ( ) where ( ) can represent 8,5,

8, 5, Xeor Ag 5 A, By or Bg , 1/deg except nondimensionel
for Ae and Ag

Transfer coefficient relating the nth cosine or sine harmonic of
nondimensional bending moment to independent parameter ( )
where ( ) can represent 8,5, 6, , Ac or s, A, s By s OF
Bg , l/deg except nondimensional for Ac and Ag

Nondimensional effective mass constant (Eq. (11)), C,/(MP)a
Mass parameter, pRCy/2Mg

Advancing tip Mach number: Mach number at the tip of blade at
¥ = 90 deg
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Harmonic number appearing in Fourier expansion

Rotor pitching moment, positive nose up, ft-1b

Amplitude of chordwise bending mode

Amplitude of ith flapwise bending mode

Transfer coefficient relating the nth cosine or sine harmonic of

the ith modal amplitude to independent parameter (
() can represent 8;5,

(Bq. (a2k)

)

els

)\c or XS ) A|

s b

) where
Bk s Or

BB:

Transfer coefficient relating the nth cosine or sine harmonic of
the ith modal amplitude to independent parameter (

() can represent 875,

(Ea. (a29))

Ratio of local section radius to rotor radius

Rotor radius, ft or in.

) where

Rotor rolling moment, positive advancing side down, ft-1b

Sine component of nth harmonic

Nondimensional aerodynamic force per unit span (Eq. (A3))

8,5 Agor Ag , A, s By, or Bg,

Spar depth parameter; spar cavity depth at blade tip divided by
value at blade root (Eq. (16))

Rotor thrust, 1b

Spar wall thickness, ft

Tip weight parameter: tip weight divided by blade weight

(Eq. (14))

Total section velocity, ft/sec

Ratio 'of velocity component at blade section parallel to shaft

to IR

Ratio of velocity component at blade section normal to blade

span and

Up

to R
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Wrip

WTP

Forward speed, knots

Blade weight per unit span, 1b/in.
Blade weight, 1b

Blade tip weight, 1b

Wall thickness paremeter; spar wall thickness at blade tip
divided by value at blade root (Eq. (15))

Distance from blade neutral axis to outermost fiber of spar
measured normal to chord, ft

Spar cavity depth (see Fig. 3), ft
Total flapwise displacement of blade section divided by R

Rotor control angle of attack; angle between axis of no feathering
and a plane perpendicular to flight path, positive nose up, deg

Rotor shaft angle of attack; angle between shaft axis and a plane
perpendicular to flight path, positive nose up, deg

Blade flap angle with respect to plane normal to shaft, redians
except where noted in deg

Preconing angle for hingeless blade, radians except where noted
in deg

Blade Lock number, pQCoR*/Ig

Chordwise bending mode shape

Flapwise bending mode shape

Demping ratio of ith mode (Eq. (A19))

Total pitch angle at any blade station (Eq. (A4)), radians

Amplitude of linear blade twist, positive when tip angle is
larger, radians except where noted in deg

Blade pitch angle at the 0.75 R station, radians except where
noted in deg
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Miscellaneous

(Y ()
*y, 0

iP, 2P, etc.

Rotor inflow ratio; ratio of velocity parallel to control axis
(axis of no feathering) to IR, positive up

Rotor inflow ratio; ratio of velocity parallel to shaft axis to
QR , positive up

Rotor advance ratio; ratio of forward velocity component in plane
of rotor to IR

Air density, slug/f‘t:3
Spar material density, lb/in.3
Rotor solidity, bc/wR

Flapwise stress at maximum blade thickness, positive when upper
surface is in compression, lb/in.2

One-half peak-to-peak value of o , 1b/in.2
Minimum value of o, (Ea. (19)), 1b/in.2
2z

Angle by which the response of the nth harmonic for the ith mode
lags the excitation force, radians

Blade azimuth angle measured from downstream blade position in
direction of advaencing blade, radians except where noted in deg

Ratio of chordwise modal frequency to )
Ratio of flapwise modal frequency to £

Rotor rotational frequency, rad/sec

Indicates first and second derivatives, respectively, of ( )
with respect to T

Indicates first and second derivatives, respectively, of ( )
with respect to y

-

Abbreviations for once per revolution, twice per revolution, etec.




TRANSFER FUNCTION CONCEPTS APPLIED TO
THE BLADE BENDING MCMENT PROBLEM

Flapwise Bending Moments

The simplified procedures developed for calculation of flapwise bending
moments are based on transfer function, superposition concepts. The use of
such concepts basically implies that the dependent variable of interest (in
this case blade bending moment) is linearly related to several of the indepen-
dent varisbles of which it is a function. Under such conditions, if the
relating functions (i.e., partial derivatives or transfer functions) can be
determined, solutions for any combination of the independent variables can
rapidly be obtained by simple scaling end superposition procedures. Balley
(Ref. 8) employed such procedures in developing his " t" coefficients, which
are simply transfer coefficients operating on the rotor flight parameters to
yield such items of interest as rotor thrust and blade flapping angle.

The application of transfer function concepts to the flapwise bending
problem can best be illustrated by considering the following simple analysis
of bending moments for an articulated blade. The equations have been simpli-
fied to permit emphasis on the basic linearity of the flapwise bending response
of the blade with certain parameters. A more complete analysis of the bending
moment problem (referred to as the approximate analysis) is presented in

Appendix A. For the present purposes, consider the blade response when the
following assumptions are made:

1. ‘Variastions in 1ift curve slope due to stell, compressibility, and
reverse flow effects are negligible.

2. Only rigid body flepping motion influences the airloads.
3. Blade twist is linear.
L, The induced velocity over the rotor disc is constant.

5. The blade is rigid torsionally.

6. The blade elastic bending deflection can be represented by a single
flapwise bending deflection mode.

7. Gravity is neglected.

-

Under the above assumptions, it can be shown that the differential equation of
motion governing the elastic deflection of the blade is

10
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(1)

where Qy, 1y, » and ‘:’_w represent, respectively, the amplitude, shape, and
natural frequency of the assumed bending mode. Since it has been assumed that
the bending deflections of the blade do not influence the airloads, the rigid
body flapping motion of the blade, B, in Eq. (1) is (for a given blade) a
linear function of the independent parameters: 975 (pitch at the three-quarter
span), 8, (blade linear twist rate), and A, (inflow ratio) (Ref. 8).
Equation (1) can then be expressed in the following form.

dZ
d—qun' + wwaqw = Ce."e-,s + C8'9| + CXCXC (2)

where Co,s> €O, 5 Cx ¢ are harmonic functions of the blade azimuth angle, y .
By assuming a negative Fourier expansion for q, , Eq. (1) can be solved to
yield the following general expression for the bending mode amplitude.

= q +3 +7q - ] 0. +Qq
w qw875'0975 qwel'o qwxco)‘c n§0[<qw97sr'n° & qwelz",cei

(3)

o Me

+ an x,)oos ny + (q"‘e,s,n,se"" + awe.'n‘se. + av‘xc,n,s)‘C)Si" n\p]

In Eq. (3), the coefficients awe, , etc. can be thought of as coefficients
operating on the basic rotor parameters ( 8,5, etc.) to yield blade bending
harmonic amplitude coefficients. It is shown in Appendix A that the expression
for bending moment at a blade radial station, T ,» and azimuth position, ¢ ,
due to a single flapwise mode is:

- EX(T)
R

M(T, ) = X710y () (1)

11




in which R 1is the blade radius, and EI (r ) and yw"(?) are the blade
structural stiffness and the blade curvature (second derivative of the blade
mode shape) at radial station, r , respectively. Substituting qy, in
harmonic coefficient form from Eq. (3) in the bending moment expression of
Eq. (4) and nondimensionalizing yields

— . _ M(F ) = V. 8 + M _ vl 9
T,y)1= = Mg., o875 + M + My ohe — 2 |\ M g ncO7s
M ( \‘,) EI/R 875,0 75 e|,0 1 Cy& n>0 ( 780 (5)
+ Mg nch + Myonc )\c)cos ny + (me,s,n,sen + Mg, n,s6
+ M)«C,n,s)‘c) sinny
in which the M 's are defined as
- =
MB-,,,n,c ors - Y“l’( r)qe7g7nvc ors
_ (6)

TP
Mg, ,n,c ors ™ yw(')qe,,n,c or s

T
Mxc,n,c ors” % (1) ncors

and will be referred to as transfer coefficients of flapwise bending moment.
If the summations over N are carried out, the expression for bending moment
for each point on the blade becomes:

MUT.0) = EI:) (Mg, (T 16,5+ Wig (.91, + Wy (79 (7)

where now the functions 6975 , etc. are termed transfer functions and operate
on 975 , etec. to yield the azimuthal variation of the blade bending moment at
each spanwise station (T ) of the blade. It is thus shown that the flapwise
bending moment distribution of an articulated blade can be approximated as a
linear function of three parameters: collective pitch, 975 , blade linear twist,
9] , and inflow ratio, A\¢ . These parameters will hereafter be referred to as
independent bending moment parameters, or more briefly, "independent parameters.”

12




It is shown in Appendix A that the flapwise moments of a hingeless blade
can also be analyzed by techniques generally similar to those utilized in
determining articulated blade moments. The transfer function equation for the
hingeless blade bending moment is given by Eq. (8).

EI(T)
M7, ¥ = =l

M87s(?.w)875+ ﬁel(?,w)e. + M, (T,y)\s

(8)
+ M, (7,9 A, + Mg, (7 418, + Mg (7,418

As indicated, the flapwise moment for the hingeless blade is not only linearly
related to 68,5, 6, , and As , but also to blade cyclic piteh ( A,s and B,s )
and built-in coning angle ( Bg ) which will also be termed independent param-
eters for hingeless blades. Note that in the articulated rotor equations
cyclic pitch angles were eliminated as independent parameters by assuming small
offset and expressing inflow ratio in the control axis system ( Ac ). Hinge-
less rotor controls will be related to the shaft axis system, which is standard
practice since the tip path plane is generally perpendicular to the shaft.
Conversion from one system to the other is important, however, when using the
performance charts of Ref. 7, and this procedure will be discussed in the
hingeless rotor application section of this report.

For a given blade design, flapwise bending moment directly determines
blade flapwise stress, O , according to the relation:

y(r) (9)

Ty = M(T,¥)
HY I(F) Y

Emphasis is placed on bending moment transfer functions rather than stress
transfer functions in this study as the former are more general in applicabil-
ity, being independent of such detail design quantities as spar thickness.

It has been shown above that the flapwise deflections of rotor blades are,
under the previously defined assumptions, linear functions of certain indepen-
dent rotor parameters. Of the assumptions made, several are not critical from
the linearity standpoint, having been made principally for the purpose of
simplicity in demonstrating the approach. For example, any twist distribution
could have been assumed, in which case the linear twist rate, 6, , would be
replaced by some other measure of blade twist. Compressibility effects could
also have been included to the extent that the lift-curve slope, a , could be
allowed to vary with radius and azimuth angle. Inclusion of the aerodynamic

13




forces due to the elastic blade response also does not affect the linearity.

On the other hand, several assumptions cannot be eliminated without introducing
nonlinear effects. For example, blade stall effects, in general, cannot be
included as these cause the lift-curve slope to be a function of 975, 9, R
and \¢. However, since rotor stall occurs only over a limited portion of the
disc, it is possible that reasonable estimates of blade bending moments can be
obtained by transfer function techniques for those flight conditions where only
moderate amounts of stall are present. Variable inflow effects cannot be
included, but these effects generally decrease with increasing forward velocity
and may be neglected for the purposes of this investigation. In general,
inclusion of torsional deflections also introduces nonlinearities as they are
functions of blade bending; however, below about 200 kts torsional deflections
are small (particularly if significant stall is not present) and cen be
neglected. Operation at speeds above 200 kts implies high advance ratio
operation where large torsional deflections can occur with conventional blades
due to the destabilizing torsionel moments produced in the reverse flow region.
However, the application of transfer function techniques to the higher flight
speed conditions is feasible if it is assumed that satisfactory rotor operation
at such conditions will probably require that excessive torsional deflections
be eliminated by approximate blade design chenges.

To summarize, in the important 100 to 200 kt flight speed renge of modern
high performance helicopters, the flapwise bending deflections of rotor bledes
are substantiaslly linear functions of several independent rotor parameters; as
a result, the application of transfer function, superposition techniques to
the problem is possible. At higher speeds, blade torsional coupling effects
may give rise to nonlinearities. However, transfer functions for high speed
conditions may be of interest in preliminary design to provide a reference
point for further more detailed analysis.

Chordwise Bending Moments
Final blade designs are, of course, dependent on chordwise bending stresses

as well as flapwise stresses. The former are, however, nonlinear functions of

8,5 , 6, , and Ac as indicated in Eq. (10) (which applies to articulated
blades). *

d?q, AN 8 B .
v (i [ (el

. (10)

*
__Cion) 8
W\OQRS/;H 'rvzd?.
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Similar nonlinearities exist for hingeless blades. Hence, the transfer function
approach cannot be conveniently applied to simplify chordwise bending calcula-
tions. However, experience with articulated rotor blades has shown that

because of the large chordwise stiffness of such blades, chordwise stresses are
only about 15 percent of flapwise stresses and, unless critically phased,
generally represent a significantly smaller Percentage of the total blade stress.
(Note that blade chordwise response is generally lightly damped and small
chordwise stresses are contingent on avoiding resonant conditions). Errors
introduced by the neglect of the chordwise stresses are therefore probably
acceptable for the purposes of Preliminary design. Such an assumption was made
in the design study of Ref. 9. A more conservative alternate treatment of
chordwise stress effects is that of Ref. 10, where the maximum allowable design
fatigue stress was arbitrarily reduced by the maximum anticipated chordwise
stress. Should more accurate estimates of chordwise stresses be desired, a
closed-form solution to Eq. (10) could be obtained. Such a solution would be
relatively accurate since the aeroelastic coupling effects associated with
chordwise deflections are small. However, for hingeless rotors where chordwise

stresses can become critical, still more refined digital methods would probably
be necessary.

In view of the above, the methods presented herein consider only rotor
blade flapwise bending deflections. Hingeless rotor blades are included as it
is believed that the transfer function approach, while perhaps not covering the
entire blade moment problem, will still provide valuable insight into the basic
causes of the importent flapwise stresses encountered on such blades.

METHODS FOR CALCULATING TRANSFER FUNCTIONS

It has been shown that transfer function techniques, properly applied, may
be expected to yield reasonably accurate solutions to the rotor blade flapwise
bending problem. Two methods for calculating these functions will now be
considered.

Approximate Transfer Function Analysis

One method for calculating transfer functions involves the use of an
appropriate simplified analysis of the type discussed in a previous section.
Such an analysis, while yielding only approximate, qualitative results, has the
distinct advantage of providing a closed-form solution to the problem. Thus it
is useful in analyzing trends established by more refined analyses and permits
identification of mechanisms by which blade characteristics influence the
resultant bending moment.
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The basic assumptions on which the approximate analysis developed in this
study is based are: )

1. The 1lift curve slope is constant (compressibility effects, stall,
reverse flow neglected).

5, The induced velocity over the rotor disc is constant.

3. Blade motions for the articulated blade are limited to the rigid
body flapping mode (assumed known) and two flapwise bending modes.

L, Blade motions for the hingeless blade are limited to two flepwise
bending modes. The natural frequency of the first mode is assumed
close to 1P so that the dynamic response of this mode can be
approximated by that of a rigid flapping mode of an articulated rotor.

5 Flapping harmonics above the second and third are negligible for the
articulated and hingeless rotors, respectively.

6. Time varying serodynamic damping and spring terms as well as
intermodal coupling effects are neglected, except where noted.

7. The blade twist is linear.
8. The chord is constant.
9. The flap hinge offset 1s zero.

With these assumptions, it is possible to reduce the basic flapwise equation of
motion of the rotor blade to two linear, differential equations with constant
coefficients. The airloads become known periodic functions and the solution

to the equations can be obtained from simple vibration theory (Ref. 11) by
assuming a periodic solution for the response of each bending mode. By such an
approach, the harmonic coefficients for the ith bending mode are given by

_AinFig ynec, ors
qu,( yn,cors M B, 2
i ®wj

(11)

where the subscript ( ) is used to denote the independent parameters 8,55 6,5
etc.

Equation (11) is a classical equation representing the response of any

linear second order dynamic system to periodic excitation. M 1is an effec-
tive mass constant, A is the dynamic amplification factor, wy is the
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natural frequency ratio, and F is the emplitude of the nondimensional
excitation force. The analysis given in Appendix A is devoted to defining the
relation between these general dynamic parameters and specific parameters
defining the rotor blade system.

Computer Analysis

To obtain transfer functions suitable for quantitative calculations, the
assumptions regarding compressibility, reverse flow, number of modes retained,
and aeroelastic couﬁling must be eliminated and, hence, digital computation
Programs must be employed. It should be emphasized that the elimination of
these assumptions does not destroy the basic linearity of the problem but merely
multiplies the mathematical operations involved manyfold. A refined version of
the UAC Normal Mode Transient Analysis, described in Ref. 1, was available for
this purpose. A brief description of this program is given in Appendix B. A
convenient feature of the program is the capability of either including the
combination of flapwise, chordwise, and torsion modes (fully coupled) or include-
ing only flapwise modes. Several comparisons of theoretical and experimental
results which serve to demonstrate the generally accurate results obtainable
with the program are presented in Figs. 1 and 2. For brevity, hereafter this
analysis will be referred to as the computer analysis.

Transfer functions of flapwise bending moment are obtained from this program
by (1) suppressing chordwise and torsional mode effects, (2) independently vary-
ing the input parameters 8255 8,5 A or g (also A > By, and Bg for
hingeless rotors), and (3) suitably normalizing the resulting computed bending
moments. For example, the collective pitch transfer function is simply

— ; R M(T,y) (12)
My, (71 W) _(EI(?)\) B

The harmonic transfer coefficients presented herein were determined by the
computer analysis. The ability to determine transfer coefficients by the computer
analysis as well as by the previously described approximate analysis results in
a relatively ideal situation where the advantage of computer-type solutions
(accuracy) is combined with that of closed-form solutions (insight).

17




PARAMETERS AFFECTING TRANSFER FUNCTIONS

The severel parameters which influence articulated rotor blade transfer
functions can be determined from inspection of Eq. (1). By definition, the
transfer functions are those functions multiplying the independent parameters,
8,5 , 6, , and Ac in the final solution to Eq. (1) and, consequently, are
affected by the remaining parameters appearing in Eq. (1). These are listed
below:

Iist of Parameters Affecting Articulated
Blade Transfer Functions

1. Advence ratio, u
2, Mass paremeter, MP = pCoR/2Mg
3. Blade natural frequencies, Ww;

4., Blade mode shepes (and derivatives), ¥, (Ywi/,yw;“)

5, Blade mass distribution, M = m/m,
6. Blade chord distribution, C =C/Co
7. Flap hinge offset, e

8. Tip loss factor, B

9. Lift-curve slope (which depends upon tip Mach number, Reynolds
number, airfoil section, and stall), @

10. Blade flapping, f8
2
11. Froude number, £ R/Q

The sbove list of parameters, excluding items 7 and 10, is applicable to
hingeless rotor transfer functions with the addition of transfer functions
relating cyclic pitch angles, A,s and By, and built-in coning, PBg. It may
also be shown (Ref. 12) that &, end y, are uniquely determined if the
dimensionless quantity Elo/Mo2R* (frequency parameter) is specified along
with the blade mass distribution, m , stiffness distribution, EI , root
restraint condition and offset. In addition, blade flapping, B , is principally
determined by 8,5, A¢ s M » tip loss factor, offset, and mass parameter.

The mass parameter, MP, may be identified in Eq. (1) as a multiplier of the
aerodynamic terms, and is related to the conventional Lock number, y , of a
uniform blade by the equation:
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mp = PSR _ v (13)
2myg 60

The basic parameters influencing the transfer functions are therefore
given in the list below:

List of Parameters Affecting Articulated and
Hingeless Blade Transfer Functions

l. Advance ratio, u
2. Mass parameter, MP = pPCoR/2mg
2 2

3. Freqguency parameter, FP = EIo/mo(Q,R) R

4. Mass distribution, m = m/mg

5. Stiffness distribution, EI = EI/EI,

6. Chord distribution, € = c/co

7. Flap hinge offset, € (articulated only)

8. Tip-loss factor, B

9. Tip Mach number, M,’go

10. Airfoil section

11. Reynolds number

12. Blade loading (i.e:, stall effects)

2

13. Froude number, Q R/g
As indicated above, the blade mass, stiffness, and chord distributions have
been normalized with respect to values at a particular radial station. The

reference radial station is arbitrary and was selected as the 55% station for
all blades considered in this investigation.
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SELECTION OF PARAMETERS FOR CHARTS

For maximum utility, the transfer coefficient charts should, if possible,
be sufficiently extensive to permit assessment of the effects of major design
parameters on bending moment. The thirteen parameters affecting the transfer
functions, enumerated above, are obviously too many to permit the generation
of sll-inclusive charts. The number of parameters must be reduced to a
managesble size if a start is to be mede on the problem. This section discus-
ses the procedure followed in selecting the paremeters to be included in the
transfer coefficient charts.

Parameters of Secondaery Importance

Several of the parameters which affect the transfer functions are of
secondary importance and can be eliminated from further consideration at this
time. These are:

1. Froude number. Gravitational effects are generally small and this
factor was neglected.

2. Reynolds number. For the range of applicability of the transfer
functions (i.e., substantially unstalled flight conditions), this
paremeter will have little effect. Reynolds number would, of course,
be useful as a guide in defining the range of applicability of the
resulting functions for a given size rotor.

3, Airfoil section. The effect of choice of airfoil section on the
trensfer functions is negligible provided that the 1ift curve slope -
Mach number relationship is unchanged. This would substantially be
the case when the airfoil is operating below critical Mach number.

As such conditions are the only ones to which transfer function
techniques are applicable, the choice of airfoil, like Reynolds
number, principelly determines the operating conditions over which
the transfer functions apply. The use of cambered .sections presents
no problem provided the angle for zero 1ift is either constant and/or
varies linearly along the blade. In such situations, the transfer
functions are unchanged and the effective collective pitch end linear
twist used to scale the functions are simply redefined.
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Constant Parameters

The following parameters are sufficiently constant for most rotors that
they can be eliminated as variables.

l.

With
remaining

Tip loss. For constant inflow analyses a tip loss factor, B , of
0.97 is generally assumed and was used in this study.

Flap hinge offset ratio. For articulated rotors, the flap hinge
offset ratio, € , is small -- typically O to 0.05. (For such small
values, this parameter could equally well be considered to be of
secondary importance.) A value of zero was selected on the basis

of compatibility with Ref. 7.

Tip Mach number. For rotors operating in the 0.25 to 0.5 advance
ratio range, this parameter is determined principally by the choice
of rotor tip speed, §lR , a quantity which, in turn, is governed by
conflicting retreating blade stall and advancing blade compress-
ibility requirements. A typical tip speed value of 672 fps was used
for advance ratios equal to or less than 0.5. At higher advance
ratios, rotor tip speed (and hence tip Mach number) is usually
determined by compressibility limitations on the advancing blades.
In this investigation, the rotor tip speed for advance ratios greater
than 0.5 was based on the requirement that the advancing tip Mach
number be equal to 0.9. It should be noted that only one value of
rotor tip speed was considered at each advance ratio. However, it
is believed that the transfer functions so determined could also be
applied to obtain good qualitative results for rotors operating at
other tip speed values.

Chord distribution. A nominally constant chord distribution

compatible with that of Ref. 7 was assumed in this investigation
Ssince nearly all existing rotor blades are of constant chord design.

Sensitivity Studies to Select Final
Blade Design Parameters

the elimination of the parameters mentioned above as variables, the
parameters affecting the transfer functions are:

1. Advance ratio, pu
2. Mass parameter, MP = pC,R/2M,

i 2.2
3. Frequency parameter, FP = EI4/ mo(.Q.R) R

21



L. Mass distribution, m = m/m,

5. Stiffness distribution, EI = EI/ET,

This list still represents a formidable number of potential parameter combina-
tions (especially when one considers the large number of combinations of mass
and stiffness distribution which could be considered). It is not feasible to
generate transfer functions for all possible combinations -- nor is it
particularly desirable from an efficiency standpoint, as certain combinations
of parameters would probably represent impractical blade designs. As an
example, en investigation of uniform bledes of conventional material construc-
tion having reasonable aspect ratio and large frequency paremeter values would
be of little value since large freguency parameters imply large airfoil thick-
ness-to-chord ratios. On a uniform blade, such large thickness ratios over
the entire blade radius would be impracticel from an aerodynamic standpoint.
A further example would be the probable impracticality of a blade having a
large inverse taper in mass distribution (mass increasing toward the tip)
combined with a large conventional taper in stiffness distribution (stiffness
decreasing toward the tip). It is evident, then, that some care must be
exercised in selecting parameter combimtions investigated if the most infor-
mation is to be obtained from the number of calculations which are considered
feasible at this time.

Tt was decided to 1limit the scope of the present investigation to the
development of transfer coefficient charts which would include the effects of
advance ratio and two of the four blade design parameters listed above. 1In
addition, only blades having low structural stiffness compared to centrifugal
gtiffness would be considered. Such blades are used on nearly every current
helicopter.

As en aid in selecting two of the four remaining blade design parameters
(mass and frequency parameters, and mass and stiffness distributions) for
inclusion in the transfer coefficient charts, a sensitivity enalysis was
conducted in an attempt to establish the relative importance of each at an
advance ratio of 0.5. For this purpose, transfer coefficients were determined
for a reference blade having uniform chord, mass and stiffness as well as &
mass and frequency perameter combination typical of existing rotors. The
sensitivity of these reference transfer coefficients to changes in mass param-
eter, frequency parameter, and mass and stiffness distributions were then
determined for both articulated and hingeless blades. To insure that the mass
and stiffness distributions selected were reasonably compatible and bore some
resemblence to practical blade distributions, it was decided to relate the
distributions to specific changes in the blade structure. In accordance with
this philosophy, a conventional D-spar blade was set up as a reference and
simultaneous changes in mass and stiffness distributions such as would result
from linearly tapering either the wall thickness or the depth of the blade spar
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with radius were considered. Also, the change in mass distribution resulting
from the addition of a concentrated weight at the blade tip (tip weight) was
considered. These three specific changes in blade structure may be defined by
three new blade design parameters - tip weight parameter, TWP, wall thickness

parameter, WIP, and spar depth parameter, SDP, These are defined by the
following equations:

TIP WEIGHT Wrip
TWP = = (1)
BLADE WEIGHT WaL AoE
wip - _SPAR WALL THICKNESS AT TIP _ twrie (15)
SPAR WALL THICKNESS AT ROOT  ty_
spp = _SPAR CAVITY DEPTH AT TIP_ Ysqpp (16)
SPAR CAVITY DEPTH AT ROOT ~ Y

Figure 3 indicates schematically the type of blade designs considered.

To conduct the sensitivity study, it was necessary to define values of
the blade design parameters for the reference blade and ranges over which the
various parameters could be expected to vary. The parameter reference values
and ranges used in the study for both the hingeless and articulated blades were
defined from considerations given in Appendix C and are listed below.

Parameter Reference Value Range
1. Mass Parameter, MP 0.3 0.1 to 0.5
_ 2. Frequency Parameter, FP 0.0025 0.001 to 0.015
3. Tip weight Parameter, TWP 0.0 0.0 to 0.5
L. Wall thickness Parameter, WTP 1.0 0.0 to 1.0
5. Spar depth Parameter, SDP 1.0 0.0 to 1.0

To facilitate identification of the numerous combinations of blade design
parameters studied, blade numbers were assigned to each. A list of blade
numbers and corresponding parameter combinations is given in Table I. The mass
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and inertia distributions for the various blades are presented in Figs. 4 and 5
and discussed in more detail in Appendix C. Note that the distributions have
been normelized by the values at the 55% radial station. The natural frequen-
cies of the principal flapwise bending modes for each blade considered are
given in Figs. 6 and 7.

Results of the Articulated Blade Sensitivity Study. - To illustrate the
type of results obtained in the sensitivity study for articulated blades, the
variation of the collective pitch transfer coefficients at the 55% radial
station (critical station) with mass parameter is shown in Fig. 8. As mention-
ed previously, the transfer coefficients are simply the harmonic coefficients
defining the various harmonics of nondimensional flapwise moment produced by
a unit change in one of the independent parameters (in this instance, 975).
Results similar to those of Fig. 8 were generated for all blade design peram-
eters (FP, MP, etc.) and all of the independent parameters ( 8755 8, » Ac Yo
To facilitate comparing the sensitivity of the transfer coefficients to changes
in all of the blade design parameters, the amplitudes of the transfer
coefficients for each harmonic were determined for the 55% radial station.

For example, the amplitude of the collective piteh transfer coefficient for a
given harmonic, n , is defined as: ‘

CB"‘,n : ﬁ@,a,n'c)z +(M8n_,n,s)2 (17)

The variation of transfer coefficient amplitude with each blade design parameter
is presented in Figs. 9 through 11, for the three independent pareameters.

Rather than completely nondimensionalizing the transfer coefficients, for
convenience, the units per degree have been retained with the obvious exception
of the inflow ratio transfer coefficient. Arrows have been used to indicate

the design parameter values for the reference blade. TFor purposes of compar-
ison, the same transfer coefficient amplitude scales have been retained within
each figure. The sensitivity of the transfer coefficients to a given blade
design parameter is indicated by the variation of coefficient amplitudes from
reference blade values.

Considering the entire range of parameter values presented, it is shown
that the blade design parameters can essentially be divided into three levels
of decreasing importance:

1. Mass paremeter
Spar wall thickness parameter

2. Freguency parameter
Tip weight parameter
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3. Spar depth parameter

That is, the transfer coefficients are (1) most sensitive to variations in mass
parameter and spar wall thickness variations, (2) less sensitive to frequency
parameter and tip weight parameter variations, and (3) relatively insensitive
to variations of spar depth parameter.

Analysis of the results indicates that the above order of importance is
determined primarily by the fact that the blade's mass characteristics play a
greater role in determining the blade dynamic response than its structural
stiffness characteristics. This is due to the Presence of the large centrifugal
forces which tend to dominate the total stiffness characteristics of the blade.
As a result,it is not surprising that the spar depth parameter is the least
important for, as shown in Figs. 4 and 5, it principally influences blade
structural stiffness. The remaining parameters all influence the effective
mass (M) of the blade in Eq. (11) and alter the dynamic response of the system.

Transfer coefficient sensitivity results for other radial stations were
examined and, in general, do not indicate any significant departures from the
characteristic trends shown in Figs. 9 through 11 for the 55% radial station.

From the sensitivity results based on the nondimensional bending moment
transfer coefficients, frequency parameter and mass parameter were selected as
the two parameters for inclusion in the transfer coefficient charts. Although
the sensitivity to spar wall thickness parameter was found to be greater than
that to frequency parameter over the entire wall thickness parameter range
presented, the transfer coefficients are relatively insensitive over the impor-
tant range from 0.5 to 1.0. Since blade designs having wall thickness taper
ratios approaching zero are considered extreme, and since frequency parameter
is a primary variable even for conventional blades, the frequency parameter was
selected. The sensitivity of the coefficients to tip weight variations is of
the same order as that due to frequency parameter variations; however, frequency
parameter was selected because blades having tip weights are considered to
represent a special design category. Although the selection of mass and
frequency parameter implies that the transfer coefficients generated are,
strictly speaking, restricted to uniform blade applications, the relative
insensitivity of the transfer coefficients to wide variations of spar depth and
moderate variations in wall thickness permits their application to certain
nonuniform blade designs as well,

Results of the Hingeless Blade Sensitivity Study. - As in the sensitivity
study for articulated rotors, blade parameters analyzed for hingeless rotors
included mass and frequency parasmeters, and nonuniform blade mass and stiffness
distributions as described by tip weight parameter, wall thickness parameter,
and spar depth parameter. The blade design paraemeters, based on available
information for existing hingeless blades, were found to lie within the parameter
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ranges considered for the articulated designs. Thus, for consistency, the

same reference values and parameter ranges used in the articulated blade
analysis were chosen for the hingeless blade analysis. Transfer coefficients
relating nondimensional bending moment to collective pitch ( 844 ), twist (8,),
inflow ratio ( A, ), preconing ( Bg ), and cyclic pitch ( A, and B, ) were
computed for the reference blade at an advance retio of 0.5. The sensitivity
of these results to variations in blade design paremeters are presented in
Figs. 12 through 17 for the critical station ( T = 0). The results indicate
that the steady and first harmonic transfer coefficients are generally an order
of magnitude greater than the second and third harmonic coefficients. Since,
during normal operation much of the steady and first harmonic would be elimi-
nated by the use of preconing and cyclic pitch, the higher harmonics comprise
a significant portion of the net moment on the blade. For this reason, the
ordinate scale of these harmonics have been expanded by a factor of 1O.

Unlike the transfer coefficients for articulated blades, it is difficult
to generalize the sensitivity results for the hingeless blades. It is shown
in Figs. 12 through 17 that the transfer coefficients are sensitive to all non-
dimensional blade design parameters including spar depth parameter, & parameter
found to be relatively unimportent in the articulated blade analysis. However,
as for articulated blades, the coefficients are relatively insensitive to spar
wall thickness if extreme variations are excluded. Although the sensitivity
of the hingeless blade transfer coefficients to each of the blade design
parameters was found to be significant (except possibly for wall thickness
parameter ), mass parameter end frequency parameter were selected as the two
parameters for further analysis. These were chosen largely on the basis that
the results would be compatible with the articulated blade results.

Advance Ratio Selection
Since the intent of this investigation was to develop a set of flapwise
moment charts compatible with the performance charts of Ref. 7, the following
advance ratios were selected for analysis:
p = 0.25, 0.4, 0.5, 0.7, 1.0, 1.k
From the previously defined variation of rotor tip speed with advance ratio,
the flight velocities corresponding to each advance ratio can be computed.

The relationship between these three quantities is shown in Fig. 18 where the
specific combinations covered in the transfer coefficient charts are noted.
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Frequency Parameter Variation for High Advance Ratios

It should be noted that rotor tip speed is constant for advance ratios up
to 0.5 and, as a result, the frequency parameter for a given blade design is
also constant. In contrast to this, at higher advance ratios, the frequency
parameter for a given design varies with # because of the reduction in tip
speed necessary to avoid compressibility losses. To account for this, the
frequency parameters found to be representative in the low advance ratio range
were simply ratioed using the following relation:

QR#SQS

FPu>0s= FPu<os = FPu<0s(0.447)(1+p)? (18)

©>0.5

The constant (0.447) is based on sea-level standard conditions, an advancing
tip Mach number of 0.9, and a tip speed for advance ratios below 0.5 of

672 ft/sec (see Eq. (C6)). Figure 19 shows the variation of frequency param-
eter with u for the three values of FPF<115 used in the transfer coefficient
design charts.

Summary of Parameters Selected for Charts

The parameters selected for the transfer coefficient charts are summa.-
rized below.

Independent bending - collective pitch, 8,4
moment parameters blade twist, 6
inflow ratio, A¢ (for articulated blades),
A\ (for hingeless blades)
cyclic piteh, A%)
cyclic pitch, Bk hingeless blades only
preconing, B ‘
Blade design param- - mass parameter, MP = 0.1, 0.3, 0.5
eters (Blades 1-9) frequency parameter, FP = 0.001, 0.0025, 0.0l
(for p<0.5); FP/(1+pu )2 = 0.000447,
0.00112, 0.00447 (for m > 0.5)

Advance ratio - W =0.25, 0.4, 0.5, 0.7, 1.0, 1.k
Harmonics - h =0,1,2,3 for u £ 0.5

n =0,1,2,3, 4, 5 for u > 0.5
Blade stations - complete radial distribution (for articulated

blades); ¥ = O and T = 0.55 (for hingeless blades)
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DESIGN CHARTS OF BENDING MOMENT TRANSFER CCEFFICIENTS

Transfer coefficient charts for uniform, low stiffness articulated and
hingeless blades were determined for all combinations of the parameters listed
in the sbove summary. The complete set of charts are presented at the end of
this report in Figs. 52 through 177. (Tabulations of all transfer coefficients,
including five harmonics for all advance ratios and six stations for both
articulated and hingeless blades, are presented in Part II of this report.)

The organization of the figures forming the charts is outlined in Table II.
For discussions purposes, sample charts are presented in Figs. 20 and 21.

The radial distribution of the collective pitch transfer coefficients for
articulated blade design 5 (reference blade) are presented for three harmonics
at advance ratios 0.25, O.4, and 0.5 in Fig. 20. A sample chart for hingeless
blades is presented in Fig. 21, where the variation of the collective pitch
transfer coefficients at ¥ = O with advance ratio (w= 0.25 to 0.5) is presented
for blade designs having a frequency parameter of 0.0025 and mass parameter
values of 0.1, 0.3, and 0.5. The charts were automaticelly processed by a
computerized plotter. To simplify the reading of the charts, grid lines have
been spaced at one-half inch intervals.

The transfer coefficients for articulated blades have been plotted versus
radial station to permit the determination of bending moment at any point
along the blade. The transfer coefficients for hingeless blades have been
plotted versus advance ratio for two specific radial stations (T = O or 0.55)
because the extreme sensitivity of the coefficients to radial location
precluded presentation on the same plot (see Fig. 22).

Scales for the articulated blade charts are constant for all harmonics
for a given blade design. However, the scales were varied, as required, for
each design for increased accuracy of reading. Differing scales for different
blade designs were desirable because although transfer coefficient values for
a given design may appear small relative to those for another, the resulting
bending moments are not necessarily also small. For example, the transfer
coefficients generally decrease in magnitude with increasing frequency param-
eter; however, if the frequency parameter was increased by increasing the
modulus of elasticity through a material change, the bending moments may
actually be increased because the transfer coefficients are multiplied by EI/R
to obtain bending moment. Thus, the scales were generally determined by the
magnitude of the maximum harmonic transfer coefficient for each blade design.

For hingeless blades, the zero and first harmonic transfer coefficients
can be an order of magnitude greater than the contribution of the higher
harmonics. However, due to the previously explained trim considerations, the
higher harmonics are equally important. Thus, two sets of scales were used for
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the hingeless blade transfer coefficients; i.e., within each figure, one scale
was used for the zero and first harmonic transfer coefficients and a second
for the higher harmonic coefficients.

Finally, due to the sensitivity of the transfer coefficients to advance
ratio, the charts have been divided into two advance ratio groupings: p = 0.25
to 0.5 and p = 0.5 to 1.h. This permits the lower advance ratio charts to
be read with a greater degree of accuracy. Also, it will be shown that this
divides the treansfer coefficient charts into (1) those which are quantitatively
accurate (i.e., those for pu = 0.25 to 0.5), and (2) those which are less
accurate due to the sensitivity of the flapwise moments to control settings
and torsional coupling at high speeds (i.e., those for p > 0.5). Three
harmonics are included in the charts for the lower advance ratios and five
harmonics for the higher advance ratios. The fourth and fifth harmonic
transfer coefficients are negligible for the lower advance ratios.

APPLICATIONS OF TRANSFER COEFFICIENTS

In this section of the report several examples illustrating various
applications of the transfer coefficient charts and techniques are presented.
Included in the articulated rotor applications are (1) a sample calculation
illustrating the detailed procedures for using the charts to compute stress,
(2) a correlation with experimental and computer analysis results for the
H-34 rotor, (3) an investigation of the effect of advance ratio and blade
design changes on vibratory stress, and (4) the development of sample stress
contours for use in conjunction with the Performance charts of Ref. 7.
Included in the hingeless rotor applications are (1) an investigation of the
effect of advance ratio and blade design changes on vibratory stress, (2) an
application of the transfer coefficient charts to s nonuniform hingeless
blade, and (3) a brief discussion of procedures for including steady hub moments.
Several comparisons are then presented of results obtained from the transfer
coefficient charts and from the approximate analysis developed in Appendix A.
The section is then concluded with a discussion of possible techniques for

applying the transfer coefficient charts to estimate teetering rotor bending
moments.

Articulated Rotor Applications

Sample Stress Calculation. - To demonstrate detailed procedures involved
in the use of the transfer coefficient charts in conjunction with the perfor-
mance charts of Ref. 7, the following example is presented. In the example,
it is required that the flapwise stress distribution at the 65% radius of an
H-34 rotor blade operating at the following flight condition be determined.
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Forward speed, V 150 kts

Lift, L 8500 1b

Drag, D -650 1b (propulsive force)
Tip speed, IR 650 ft/sec

Advance ratio, p 0.39

Density, p 0.002195 slugs/ft3

Tip Mach number, M1,9O 0.79

The rotor characteristics are:

Number of blades, b L

Redius, R 28 ft
Chord, ¢ 1.37 £t
Solidity, o 0.0622
Blade twist, 8, -8 deg
Flap hinge offset/radius, € 0.05

Mass and stiffness distributions see Fig. 23

The blade bending stresses are determined using the following procedure:

1. From the weight and flapwise moment of inertie distributions,
determine representative values of blade mass per unit length (m, ) and
structural stiffness ( EI, ). From Fig. 23,

w
Io

0.4l 1v/in. ( mg = 0.164 slugs/ft)
1.47 in4 (ET, = 107(1.47) = 1.47 x 107 1b-in.2)

Note that for articulated blades, the high mass and stiffness region at the
root end of the blade may be neglected for the purposes of determining moments
in the more critical outboard regions of the blade.

2. Calculate the mass and frequency parameters.

pCoR _ 0.002195(1.37)(28)

MP =
2m, 2(0.164)

= 0.26

7
ELo . la7xi0 l/m 4= 0.00188
moR2(QR)Z  0.164(28)2 (650)
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3. Check the applicability of the transfer coefficient charts to the
current problem of interest.

a. Articulated or hingeless root

restraint? YES (articulated)
b. Nominally constent chord? YES
c. Tip speed near value in Fig. 18

for same u ? YES (650 vs 672 fps)
d. Small flap hinge offset? YES

e. Advance ratio, mass parameter
and frequency parameter within
limits of charts<? YES
f. Mass and stiffness distributions
reasonably represented by uniform
blades? YES (see Fig. 23)
(As an aid in answering this
question the results from the
sensitivity studies may be used
(Figs. 9 through 11)).

If the answers to any of these questions are negative, the application of the

charts may still be of interest to establish qualitative trends for preliminary
design.

4. Nondimensionalize rotor 1ift and drag.

AT L 5 = 8500 == 0.0596
T pbc R R) (0.002195)(4)(1.37)(28)(650)

So . O - ~ 650 - 0.00457
[e 2

obCRIQR)2  0.002195(4)(1.37)(28)(650)2

2. Use the performance charts in Ref. 7 to obtain 6,5 and ac .

Figures 7, 13, and 14 of Ref. 7 are used to interpolate for # = 0.39 and
M,oo =0.79 far 6§ = -8 deg. The correction for solidity ( o = 0.0622 vs
o = 0.1 of Ref. 7) is included. The resulting control angles are:

8,5 = 8.5 deg ac = -10.9 deg

Check operating point to insure that significant stall is not present.
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6. Calculate thrust coefficient Cy and inflow ratio (¢ ).

Cr=o [(CL/cr)COSac + (CD/cr)sinac] = 0.00358

- VSinuL CT .
Ac = TR e il 0.078

(caution: A¢ in the control axis system is required for the articulated
transfer coefficient charts; however, \g in the shaft axis system is required
for the hingeless blade charts.)

7. Using the transfer coefficient charts, interpolate to determine the
transfer coefficients at the required radial station for the given mass param-
eter, frequency parameter, and advence ratio.

The srticulsted rotor charts for the low edvance ratio range (Figs. 52
through 78) were used to interpolate to MP = 0.26, FP = 0.00188, u = 0.39,
and T = 0.65 to obtain the following transfer coefficients.

Transfer Coefficients

n,cors Mg, .n,cors Mg, n,c or s Myxcmeor s
0] 0.0008 0.0092 -0.53
1,c -0.0118 0.0027 -0.85
1,s 0.0105 -0,010k4 ©0.94
2,c 0.0063 0.0019 0.61
2,s -0.0029 0.0058 -0.23
3,c -0.00k4 0.0025 -0.03
3,8 ~0.0065 -0.002 047

8. Compute the transfer function for each independent parameter ( 875 5
8 5 X ) by performing a harmonic summetion of the transfer coefficients.

3

M= Moo~ ng'(M( 1n,c COSNY +M ) o gsin nW)

Note that ( ) is used to symbolize one of the independent perameters. The
resulting transfer functions are presented in Fig. 2k4.
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9. Multiply the transfer functions NQ% s MG. and hAX by the values of
the respective independent parameters ( 6.5 , & , and Ac ), and by the multi-
Plying factor for stress (Ey/R) to obtain the contribution to stress of each
independent parameter. Then, calculate the total stress distribution by
summing the contributions of each of the independent parameters.

E%— =29400 Psi

. Ey (o = -
O'F - R (M975975 + Me| 9| + M)‘CXC)

Note that if bending moments were desired, the multiplying factor would be
EI/R The resulting contributions of each of the independent parameters to
the stress distribution, for the current example are presented in Fig. 25.
The total stress distribution is presented in Fig. 26b.

If only the total, and not the components of stress due to the indepen-
dent parameters, were of interest, it would have been more efficient to retain
the component contributions in harmonic form and perform the harmonic summation
once in Step 9 rather than for each parameter as in Step 8.

Comparison with Experimental and Computer Analysis Results. - The transfer
coefficient charts were used to predict the flapwise stress distributions for
the H-34 rotor operating at 110, 150, and 175 kts. These results were
compared with experimental results (NASA/Ames wind tunnel test) reported in
Ref. 13, and with the results of the computer esnalysis described in Appendix
B. Chordwise and torsional flexibilitywere included in the computer analysis
and the controls ( 875, A\c) were adjusted until the correct 1lift and drag
were computed (when used in this manner, the computer analysis will be
referred to as "fully coupled").

The results are compared in Fig. 26 for the three flight speeds and two
radial stations. As shown, the results obtained using the transfer function
approach are only slightly less accurate than those from the computer analysis
(fully coupled) and both agree well with experiment.

The characteristic stress distribution is generally the same for the three
flight speeds and two radial stations presented. The azimuth locations for
the pesk stresses are approximately 120 and 250 degrees, although in some
cases the positive peak value is located at O degrees. To obtain some
insight for the characteristic stress distribution, the transfer functions and
the components of stress representing the independent contributions of
collective pitch, twist, and inflow ratio presented in Figs. 24 and 25 were
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examined., The distributions presented are for the 150 kt condition and the
0.65 radial station. It 1s shown in Flg. 25 that the contributions due to

875 and A¢ are comparable in magnitude and opposite in sign and thus tend to
cencel. As a result, blade twist contributes significantly to the total stress
amplitude.

Effect of Advance Ratio and Design Changes on Stress. - The transfer
coefficient charts were used to compute the variation of blade stress with
advance ratio for several blade designs operated in a possible compound
helicopter mode of operation. Table IIT lists the blade designs considered
and the flight conditions at which stresses were calculated. The basic
design variations which were made involved increasing twist, 6, , from O to
-8 deg and increasing frequency parameter from 0.0025 to 0.01 through the use
of advanced fiber reinforced materials such as boron-epoxy. The EYy /R values
used to convert the transfer coefficients to stress are representative of
blaedes having spar thicknesses equal to 12% of the blade chord and aspect
retios of 19. Flexural moduli (E) of 107 and 2.8 x 107 for aluminum and boron-
epoxy, respectively, were used.

The compound helicopter mode of operation considered was defined by the
following requirements.

1. The aireraft propulsive force is provided by some means other than
the rotor so that the rotor may be operated at an angle of attack
of zero degrees.

2. The rotor generates a lift coefficient/solidity (C_ /o) of 0.051 at
advance ratios up to 0.5. At higher advance ratios, the C /o of
the rotor is equal to 85% of the lower stall value as determined
from the charts of Ref. 7 (values of C_ /o are given in Table III).

3. Rotor tip speed is equal to 672 fps at advance ratios up to 0.5 and
is reduced at higher advance ratios to produce an advancing tip
Mach number of 0.9.

4, TRotor collective pitch values used to scale the transfer coefficients
were determined from the charts of Ref. 7 and are listed in Table III.

Sample results of the calculations for the reference aluminum blede
design with zero twist are presented in Fig. 27 in the form of azimuthal time
histories of stress for the 55% redial station. These results indicate large
increases in overall vibratory stress level and higher harmonic stress content
as the advance ratio of the rotor is increased. Also presented in Fig. 27 are
stress time histories computed using the computer analysis (fully coupled)
including two blade edgewise and one torsional degrees of freedom and trimming
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rotor control settings ( 875 and A\¢ ) to produce the C /o and ac values
corresponding to the rotor mode of operation described Previously. Blade
edgewise and torsional stiffness characteristics were selected so as to provide
the following frequency ratios.

Natural Frequency Ratios

Advance Ratio

Aluminum Blade

0.25-0.5 0.7 1.0 1.4
1lst edgewise mode 0.242 0.242 0.243 0.243
2nd edgewise mode 3.353 3.587 3.949 IRIIT
1st torsional mode 7.142 8.095 9.483 11.356
Boron-Epoxy Blade
1st edgewise mode 0.243 0.244 0.244 0.2h4h
2nd edgewise mode 5.274 5.855 6.717 7.90k4
1st torsional mode 7.142 8.095 9.4k83 11.356

Flapwise frequencies can be obtained from Fig. 6a.

The results of Fig. 27 indicate that while the qualitative accuracy of
the transfer function approach is good at all advance ratios, its quantitative
accuracy decreases with increasing advance ratio. It was determined that this
loss in accuracy was due principally to the increased elastic torsional
deflections of the blade which occur at high p# because of adverse reverse
flow effects. These deflections influence airloads as well as the control
Parameters required to trim the rotor at the required C, /o . To demonstrate
this point, additional calculations were made retaining only flapwise modes
and using trim control values from Ref. 7 in the computer analysis. These
results are also presented in Fig. 27 and for the higher advance ratios compare
much more favorably with the transfer function results. Table IIT indicates
that when controls from Ref. 7 are used in the computer analysis the CL/c
differs somewhat from the.prescribed values.

Results similar to those of Fig. 27 are presented in Figs. 28 tbrough 30
for the other blade designs considered, and substantiate the previously reached
conclusions regarding the adverse influence of advance ratio on stress magni-
tude and the quantitative accuracy of the transfer function approach.

The results of Figs. 27 through 30 are summarized in Figs. 31 and 32

where the vibratory stress amplitudes predicted by the various approaches for
different desgins are compared. Figure 31 shows the effect of introducing
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blade twist for a given blade material while Fig. 32 presents a more direct
comparison of stresses for the untwisted aluminum and boron-epoxy blades for
the complete advance ratio range. It 1s evident from the results presented that
increasing blade twist significantly increases blade stress at a glven advance
retio. Considering that the vibratory fatigue stress limit for aluminum can be
of the order 5,000 psi, a uniform blade with -8 degrees of twlst would be
1imited to flight at advance ratios less than 0.4. Much higher advance ratios
are achievable with untwisted blades, as indicated in Fig. 32. In fact,
neglecting torsional effects (which account for the higher stresses shown by
the fully coupled computer snalysis), the vibratory stress for the untwisted
blade reaches & maximum at an advence ratio of about 1,0 and then declines.
This decline is due primarily to the reduction in rotor 1lift and hence rotor
collective pitch at the high advance ratios. A similar pesking in the stress
for the -8 deg twist blades would not occur because blade twist is, of course,
independent of advance ratio. Further analysis of the effects of blade twist
are presented in a later section.

The results obtained also show that blade stresses for the boron-epoxy
blade are approximately two times those for the aluminum blade. The advantage
of the boron composite material results from its allowable vibratory stress
which is more than double that of aluminum. If the blade dynamic response
(and hence blade strain, assuming the same thickness) for the two blades were
jdentical, the stresses for the boron blade should be higher by a factor equal
to the ratio of the elastic moduli for the two materials (2.8); it is evident
then that the dynamics of the blade response have, in fact, been changed by
increasing the frequency parameter from 0.0025 to 0.01. Comparison of the
transfer coefficients for the two frequency perameter values indicates that
the 2P response of the blade is reduced significantly as the frequency param-
eter is increased to 0.01. This reduction is due to the increase in the
blade's first flapwise frequency ratio from 2.61P to 2.97F (see Fig. 6a),
which implies both that the blade is stiffer and that the amplification of
the 2P response is reduced. (The reduction in response may be estimated with
reasonable accuracy using Eq. (11) assuming thnat F and M are constant).
Because of the relatively large damping of the first flapwise mode (about 20%
of critical) there is little increase in the amplification of the 3P response
so that the overall dynamic response of the blade is reduced significantly.

Stress Contour Plot. - As a further example of the utility of the transfer
function approach, the transfer coefficients for one articulated blade design
were used in conjunction with one of the performance cherts of Ref. 7 to
determine stress contour lines as a function of rotor performance.

A typical flight condition and blade design, defined by the following,
were selected.
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Advance ratio, u 0.k

Tip Mach number, M, gq 0.8

Mass parameter, MP 0.3
Frequency parameter, FP 0.0025
Multiplying factor for stress, Ey /R 31400 psi
Blade twist, §, -8 deg

The one-half beak-to-peak flapwise stress (vibratory stress) contours were
computed for the eritical 55% station and are presented in Fig. 33. The
performance chart was taken directly from Fig. 1lbb of Ref. 7, and the stress
contours have been superposed on the basic chart in increments of 250 psi.
Examination of the results indicates that for a given drag coefficient (Cp/o )
vibratory stress increases with increasing lift coefficient ( C_ /o ). Also,
for a given lift coefficient, there exists a drag coefficient for which the
vibratory stress is a minimum. This occurs where a stress contour line is
tangent to a constant 1lift coefficient line. The locus of such points forms
the minimum stress line indicated on Fig. 33. For those operating conditions
where the rotor is providing an appreciable propulsive force,the vibratory
stress is much less sensitive to changes in 1lift or propulsive force than for
conditions where the rotor is contributing substantial drag.

The nature of the vibratory stress variation with Cp /o for one value of
CL /o 1is more graphically shown by the top graph in Fig. 34. For the C_ /o
chosen, the optimum Co/a (from stress considerations) is about -0.006. The
bottom graph in Fig. 34 shows how the character of the stress time history
changes as Cp /o- varies. Analysis indicates that the minimum vibratory
stress will occur at the Co/b value for which the governing positive stress
pPeak in the stress time history shifts sharply from one general azimuthal
location to another. In this particular example, as Cp/oc is decreased
through the optimum value of -0.006, the positive stress peak shifts from a
¥ of 240 deg to a ¥ of O deg. Some of the factors causing this shift may
be deduced from analysis of Fig. 35 where the contributions of the independent
parameters to stress are presented.

Returning to Fig. 3L, it is shown that the rate of change of peak-to-peak
stress with drag coefficient for a given 1lift coefficient is reasonably linear
on either side of the minimum stress point. This suggests the possibility of
reducing the stress-performance information provided by contour plots to =
more concise form through a linearization of the centour results. This is
accomplished by describing the rate of change of %7peak-to-peak stress with
drag coefficient by two partial derivatives -- one for drag coefficients
greater than the coefficient for minimum stress and one for coefficients less
than the coefficient for minimum stress. The partial derivatives are presented
in Fig. 36 as functions of C./o along with the minimum % pesk-to-peak stress
and the drag coefficient at which the minimum stress occurs. The vibratory
stress may thus be expressed by the following linear equation relating stress
to the drag coefficient for-a given lift coefficient.
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. a(”‘ir??)

: (19)
TPy 3(Cp/o)

Cp/o - (Cp /o )MINQ' PTP oy 6qu,'lnp

All values on the right hand side of the equation, (except the drag coefficient
which, of course, must be specified) are presented in Fig. 36.

From the linesr nature of the curves with C_ /o in Fig. 36, it is evident
that the linearization process could be carried still further if desired by
describing the curves in terms of their slopes and intercepts. If this were
done, it appears that stress contour plots of the type shown in Fig. 33 could
be described with good accuracy by eight constants representing the slopes and
intercepts of the four lines in Fig. 36.

The ability to express vibratory stress contour plots in terms of rotor
performance - characteristics has only been investigated for the contours
presented in Fig. 33. Further investigation of this approach for other blaede
designs end edvance ratios was beyond the scope of this study.

Hingeless Rotor Applications

Sample Stress Calculation. - In this section, sample calculations are
presented to illustrate the use of the transfer coefficient charts in conjunc-
tion with the performence charts of Ref. 7 to compute the effect of advance
ratio and blade design changes on hingeless blade stressés. To apply the
hingeless rotor transfer coefficient charts, it is necessary to determine
control settings ( 875, 6, , etc.) for a given flight condition. The performance
charts, Ref. 7, were originally developed for articulated rotors and were used
to provide control settings for such rotors in the preceding section. How-
ever, the charts can be used with equal facility for hingeless rotors if
trimmed, zero hub moment, flight is assumed. The equivalence, for performance
considerations, of flapping coefficient, Q,,for the articulated blade in
Ref. 7, and cyclic pitch coefficient, B;g , for the hingeless blade allows
rapid determination of the control parameters 875, g, and Bb‘ This
equivalence of @, for a pure flepping rotor and 8,5 for a feathering hingeless
rotor is independent of the hingeless blade stiffness or its first bending mode
phase engle, assuming zero hub moment (therefore zero first harmonic response)
and neglecting higher harmonic responses. The tip path plane must be the
reference plane when equating the two systems in order to produce identical
aerodynsmic forces relative to the free stream. Considering the above
assumptions, the tip path plane of the hingeless rotor, therefore, is
independent of its stiffness. The difference between the two systems exists

38




only in the alignment of the shaft under the rotor. With the pure (1P) flapping
rotor, neglecting coning and lateral motions, there is only flapping with
respect to the shaft (@, ). To convert this system to a pure feathering rotor,
without altering the tip path plane, the shaft is adjusted through the angle

q, to elimihate flapping with respect to the shaft. To maintain similar
blade aerodynamics, theblades must be feathered, with respect to the shaft, an
equal amount a, (or, more properly, Bk)' An additional parameter which affects
hingeless blade moments is cyelic pitch coefficient, Ag » and the articulated
rotor equivalence of this Parameter, assuming zero hub moment, is the flapping
coefficient, -b, , which can be obtained with sufficient accuracy from Ref. 7
or Ref. 8, or alternately can be calculated using the following equation.

A= -by = - (e_Jf_;fﬁal‘é‘{w"a'z"” r[97s(2'r+ %Lz) +

2
a5 -5 (

(20)

2
+

brt

§ oy 2]

Eq. (20) was derived using an approximate analysis similar to that described
in Appendix A. It should be noted that the value of -bl obtained from Ref., 7
should be multiplied by the quantity y/8 since the data presented in that
report are for a Lock number, y , of 8.0.

Since hingeless rotor steady hub moments are extremely sensitive to
control parameter changes, it is difficult, wsing the performance charts of
Ref. 7, to determine cyclic Pitch controls with the precision required for
trimmed zero moment flight. As a result, residual 1P moments (steady hub
moments ) may be present in the total flapwise moment time history obtained by
scaling and superposing transfer coefficients. The size of the residual 1P
moments can be significant relative to the higher harmonics; however, it will
be shown that, for low stiffness hingeless rotors, cyclic pitch controls, A
and Bk » do not significantly affect higher harmonic moments. Additional
evidence of the relative independence, at constant 1lift, of the higher harmonic
moments (or stresses) to the 1P moments produced by cyclic pitch is shown in
Fig. 37. Here the stress distributions from the computer analysis are
presented for two cyclic pitch settings for a sample rotor at an advance
ratio of 0.5. A% cyclic pitch has been changed by 1 deg to effect a large
change in 1P stress (equivalent to 10,000 ft-1b change in hub moment). The
total stress distributions (as computed),and distributions which result when
the first harmonic component of the total stress is omitted, are shown.
Although large differences are seen in the total stresses, nearly identical
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distributions result when the first harmonic is removed. It 1s possible,
therefore, to arbitrarily remove the residual 1P stress to obtain a good
approximation to the final trimmed stress distribution. The accuracy of this
approximation will decrease as blade pitch is increased to the point where 1P
flapwise moments are required to compensate for 1P chordwise moments to achieve
trim.

The general procedures described above were used to compute the effect of
advance ratio on blade stress for several blade designs operated in the com-
pound helicopter mode described previously for the articulated rotor (see page
34). Listed in Table IV are the specific designs considered and the advance
ratios at which stresses were computed. As with the articulated rotor, the
basic design variations involve increased twist and increased frequency param-
eter (through the use of boron-epoxy). To illustrate the steps involved in
obtaining the control settings from Ref. 7 the following example is presented.

Flight Conditions and Blaede Characteristics

p = 0.25
Moo = 0.75
C./e = 0.051

ag =0
o = 0.1
FP = 0.0025

MP = 0.3 ( y = 10)
8, = -8 deg
BB = 3 deg

The control parameters, 6sg, Bk , and \g are obtained from the performance
charts, Ref. 7, as follows:

For hingeless rotors,

0' = BI‘
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Therefore, for ag= 0, B.s =-Qc = Q . Figures 4 and 5 of Ref. 7 present
the performance results for advancing tip Mach numbers of 0.7 and 0.8, respec-
tively. 075 and B% are obtained from each figure and linear interpoiation is
used to obtain the values at 0.75 Mach number. For this example, where @, =

- ac , points on Fig. 4(a) and 4(b) of Ref. 7 are determined where @, = - ac
and C /o, = 0.051. (If some other prescribed ag were used, such as 2 deg,
then corresponding points would be found at 9 =2 -a; ). A rapid method for
locating the correct 0, is to crossplot points from Fig. L4(b) at C_ /o = 0.051
for two or more values of q¢ on Fig. 4(a) at corresponding values of g, .

For example, points on the Ci /a = 0,051 curve at ac = -2 deg and - U4 deg
(Fig. 4(b)) can be placed on Fig. U(a) at 0, = 2 deg and 4 deg and connected
with a straight line (the corresponding points for the ag = -2 deg condition
would be placed at @ =4 deg and 6 deg). The intersection of this line with
the C_ /o = 0.051 curve represents the Qq, (or'B% ) solution which satisfies
the ag and CL/U constraints. From this point, rotor drag coefficient, CD/U s
can be obtained and the equivalent point on Fig. 4(b) gives the collective
pitch, 675. For the example under consideration, and after averaging the
results obtained from Figs. 4 and 5,

Ol = BlS = 2-’41 deg

075 = 4.0 deg
The inflow ratio, Ag , is obtained using the conventional momentum
equation assuming st << u? and C_= Cy for low angles of attack:

Cr
)\s = F.tonas - T,U-' = - 0.0102 (21)

The longitudinal cyclic pitch, A,  , is obtained from Eq. (20) as -0.9 deg.
The calculated control parameters are then used to obtain the transfer
functions for r = O (from Figs. 107, 110, 113, 116, 119, and 122) and then
combined to form the total stress time history shown in Fig. 38. The upper
figure compares the resulting total stress, which is seen to contain 1P
components (and therefore is not exactly trimmed), with the computer analysis
results assuming flapwise modes only. The major discrepancy is seen to occur
in the steady stress which results from the lower 1lift coefficient obtained
with the more accurate analysis using control parameters from Ref. 7 (see
Table III). In addition, the absence of gravity effects in the transfer
function charts produces slightly higher steady stresses at the same 1lift
level (approximately 1400 psi for this condition). The lower figure represents
the trimmed results where the same stress time histories have been replotted
excluding the 1P components. Shown slso on this figure are the stress results
using the fully coupled computer analysis where typical hingeless blade
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chordwise and torsional characteristics were assumed and where the rotor has
been retrimmed (through collective pitch changes) to the correct C./o .

Effect of Advance Ratio and Design Changes on Stress. - Calculations
gimilar to those described above were performed to compute the stresses for
the several designs and advance ratios listed in Table IV. Sample stress time
histories at different p's are presented in Figs. 38 through 4O for the
twisted and untwisted reference aluminum blade. At the higher u's useful
results using the fully coupled computer analysis could not be obtained due to
the extreme torsional deflections which were encountered. Also, the accuracy
of the transfer function approach is generally reduced at the higher pu's due
partly to the basic limitations of the method and also by the inability to
obtain accurate control parameters from the performance charts of Ref. 7.

This is reflected in the lower lift levels which are normally produced by the
computer analysis when the control parameters of Ref. 7 are used. It was
found, for example, at an advance ratio of 1.4 that a 0.1 deg error in 84
produced nearly a 0.01 change in C./o . This is over 25% of the desired

CL /0' and serves to demonstrate the extreme sensitivity that exists at the
high advance ratios as well as the necessity for exercising considerable care
in using the performance charts of Ref. 7 to obtain control parameters.
Emphasis should therefore be shifted from the quantitative to qualitative
features of the results for the high advance ratio conditions.

The variations in the vibratory stresses (excluding 1P component) with
advance ratio are summarized in Figs. 41 and 42 where the effect of the twist
and frequency parameter (material) design changes are shown. The results are
generally consistent with the previously presented articulated rotor results
in that higher stresses are produced by both increased twist and the use of
boron-epoxy. It should be noted that the -8 deg of twist increases the stress
at a given u by about 30 to 50 percent for the hingeless rotor, wheresas with
the articulated blade the increase is about 300% (see Fig. 31). The reason
for this will be discussed in a later section.

Nonuniform Hingeless Blade Application. - In practice, it would not be
possible to construct a hingeless rotor having blades uniform from the tip to
the center of rotation due to the necessary offset produced by the finite
shaft diameter and the variations in blade stiffness which result from blade
retention and feathering bearing mechanisms. The principal effect that these
nonuniformities have is to increase the effective flapwise stiffness of the
blade. This higher stiffness is reflected primarily in the first mode
natural bending frequency, 5W| , which has the major influence on the blade
response and therefore the blade aerodynamics.

The frequency parameter calculated using the uniform outboard section of
the blade would generally result in a first mode frequency below the frequency
determined using the actual nonuniform stiffness distribution, including the
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inboard effects. When using the frequency parameter corresponding to an
improper frequency, the aerodynamics and consequently the blade moments
determined from the transfer coefficient charts would be in error. The error
can be readily avoided, however, by entering the charts with an effective
frequency parameter corresponding to the known first mode frequency, @, .
This, in effect, assumes that the moment distribution on the nonuniform blade
is approximately the same as that on a uniform -blade having the same first
mode natural frequency. The procedure is best demonstrated by a sample
calculation.

Flight Condition and Blade Characteristics
p = 0.002378 slugs/ft3
g = 0.25
CL/oc = 0.051

Cp/o = -0.0033

R =17.5 ft

c =1.125 ft

8, = -4 deg
QIR = 650 fps

Mo = 0.13 slugs/ft
wy = 1.118
"MP = 0.18

The control parameters are obtained from Fig. 21 of Ref. 7 and Egqs. (20) and
(21).

B, = 0 =3.1deg

8,5 = 6.0 deg
A = -0.83 deg
Ag = -0.0297
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The frequency parameter corresponding to the first mode bending frequency,
T, > obtained from Fig. Ta, is 0.01. The transfer coefficients are then
obtained from the charts in the normal fashion, and the total nondimensional
mgments,'ﬁ , are found by using the control parameters and summing the
harmonics. The actual blade moments are obtained by solving for an effective
uniform blade EI/Rcompatible with the frequency parameter and using the result to

dimensionalize the coefficient ™ .

EL - (rAm(QR7R
= (0.01)€0.13)(650)2(17.5) = 9600 ft-1b
M =%—m = 9600 M ft-1b

115,000 M in.-1b

This uniform blade moment, as stated previously, is assumed then to be equal
to the nonuniform blade moment.

The results of this method are compared in Fig. 43 to the results
obtained from the computer analysis using the actual nonuniform blade charac-
teristics. The moment time histories are presented with and without the
residual 1P component and good agreement in the vibratory moments is indicated.
Again, the major discrepancy occurs in the steady component which is due
primarily to the absence of gravity in the transfer function charts.

If the first mode bending frequency of the blade under consideration is
not known, Ref. 12 provides a rapid and relatively accurate method for
determining flapwise bending frequencies for nonuniform hingeless blades.

Steady Hub Moment Application. - When a flight condition requires that a
steady hub moment be provided to balance some moderate fuselage moment, the
steady moment may be converted to a 1P moment in the blade coordinate system
at T =0 using Eqs. (22) and (23) which can then be added directly to the
higher harmonic moment distribution to obtain a good approximation of the
total moment.

Mi,c, #:0 = % (PM) (22)
M) s 7:0° -g- (RM) (23)
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In addition, an estimate of the cyeclic pitch required to produce this moment
can be obtained by using the first harmonic transfer coefficients at ¥ = O and
solving the following equations for AA, and ABy.

2(PM)R

bEI EHA|S,I,(:AA|S+.M-BISvLCAB'S (2,4')
2(RM)R - -
_ﬁ- = MAIS.I,SAA's+ MBIg,',SAB's (25)

Approximate Analysis Results

In this section, transfer coefficients and total stress distributions
are computed using the approximate analysis (Appendix A) for two blade
designs operating at one advance ratio. The results are compared with those
obtained using the transfer coefficient charts. The purpose is to demonstrate
both the general accuracy of the approximate analysis and its usefulness in
Providing insight into some of the factors contributing to observed blade

stress characteristics. The following rotor flight comlition parameters were
considered.

Articulated Hingeless

MP 0.3 0.3

FP 0.0025 0.01
M 0.5 0.5
C/o 0.051 0.051
Co/o -0.001 -0.0044
critical r 0.55 0

8.5 2.2 deg 12 deg
6, -8 deg -4 deg
Xe» Mg -0.005  -0.15
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In performing the calculations, blade flapping derivatives obtained from the
computer analysis neglecting edgewise and torsional effects were utilized.
Such derivatives should closely approximate those which can be derived from
the tables of flapping coefficients presented in Ref. 7. The average 1lift
curve slope appearing in the approximate analysis was teken as 6.87 -- a value
equal to the unstalled lift curve slope at the 75% radial station at a blade
azimuth angle of O deg.

Articulated Blade Results. - The transfer coefficients computed by the
approximate analysis for each radial station are compared with those from
the charts in Fig. L4, where the approximate analysis is seen to yield gener-
ally excellent qualitative results. 1In Fig. 45 the total stress for the 55%
vadiel station computed by scaling and superposing the transfer coefficients
of Fig. L4 are compared. The total stress results are broken down into
components in Fig. 46 to illustrate the contributions due to inflow, collective
piteh, and twist. (Note that, for increased clarity, a different scale for
the inflow component has been used). Again, the approximate analysis results
are in good qualitative agreement with the more accurate transfer coefficlent
chart results. In addition, it is evident that, for this particular flight
condition, the stress component due to twist is the dominant one. This
component can be analyzed further to define its harmonic content and the
relative contributions of the first and second bending modes. The approximate
analysis results indicate that the stress due to twist for this condition can
be expressed as

(OF)g, * ['2600 +260c0Sy - 3220siny + 1700 cos2y +1560sin2y +100cos3y
|

- 2005in3w]i-| +[|60 + BOCOSY + 170siny - 290cos2y + 20sin2y

+ 60c0S3y - 305in:‘5\1']i= )

where the | subscript denotes the contribution of each bending mode. The
dominant stress harmonics are the steady, 1P and 2P and the first bending
mode is the principal contributor. Factors contributing to these harmonics
can, in turn, be defined by examining the generalized force expressions

given in Appendix A. Such exemination indicates that the principal stress
harmonics induced by blade twist are caused directly by the harmonics present
in the following airload term (see Eq. (A10)).

2
(7 -075)8,us® = (T -079) [?2+2p.? siny + —g— (1 -cos 2w)]

By contrast, the airloads due to the flapping motions induced by twist are
negligible. From the form of the above expression, it is evident that air-
loads exciting the first mode are proportional to the square of the local
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velocity, and thus the largest and smallest response of the blade should be
expected on the advancing and retreating portions of the rotor disc, respec-
tively. The question may be raised as to why the first bending mode is so
responsive to blade twist airloads. The reasons for this are: (1) the
natural frequency of the first mode (2.61P) is closer to the principal airload
excitation frequencies and (2) the radial distribution of airloads due to
twist is such that considerable energy can be transmitted to the first mode.
To illustrate the latter point the radial distribution of blede airloads at
y of 90 deg produced by 1 deg of positive twist is compared in Fig. 47 with
the mode shape of the first bending mode. The striking similarity of the two
curves is apparent and implies that the twist airloads are largely orthogonal
to (and hence do not excite) all modes but the first.

It should also be noted that the twist airload expression presented above
contains vibratory terms involving first and second powers of advance ratio
In the low advance ratio range (pu < 0.5) the psiny term is the largest
term. This accounts for the generally linear increase with p of the stress
increment due to twist shown in Fig. 31.

Hingeless Blade Results. - The transfer coefficients at the root of a
hingeless blade as predicted using the approximate analysis and the transfer
coefficient charts based on the computer analysis are presented in Fig. 48 for
the critical radial station. The corresponding stress distributions (excluding
1P components) for the flight condition of interest are presented in Fig. 49.
The stress results are broken down into components in Fig. 50 to indicate the
relative contributions due to inflow, collective pitch, and twist. For
greater clarity, the ordinate scale for the twist component has been expanded.

Examination of the results of Figs. 48 through 50 indicates that the
approximate analysis results are in good qualitative agreement with the more
accurate results obtained using the transfer function charts. The total
stress comparison (Fig. L9) tends to be somewhat better than the component
comparisons (Fig. 50) because of compensating errors in the 675 and A\g com-
ponents. Figure 50 also indicates that the twist component is by far the
smallest, having an amplitude of only about 5% of the 975 and Ag component
amplitudes and about 20% of the total stress amplitude shown in Fig. 49. This
is in direct contrast to the articulated blade situation where twist effects
are much larger. The difference is due directly to the elimination of the
large 1P component of stress due to twist when the hingeless rotor is trimmed
so that no steady moments are transmitted to the fuselage.

The large collective pitch stress component was briefly examined to

determine the relative contribution of the various harmonics and bending modes,
The stress component as given by the approximate anelysis is:
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(o), * [9|7oo - 15200C082y +6000sin2y —1890C0S 3y - 7505iﬂ34']i |
. L]

+ [3170 +5650c0s2y - 1400sin2y - 7050c0s3y +4000sIn3y

- 950c0s4y - 4905‘“4‘4‘]i 2

where, as before, the i subseript denotes the contribution of each bending
mode. As might be expected from their natural frequencies (1.12 for the first
mode, 3.37 for the second), the first mode has large 2P components while the
second mode has large 3P components. Both modes, of course, exhibit steady
components due to the steady sirloads acting on the blade. The considerably
larger steady response of the first mode is due to its particular mode shape
which as shown in Fig. 51 is quite similar to the radial distribution of steady

airloads. The large steady stress computed for this hingeless blade could of
course be reduced by the introduction of preconing.

Teetering Rotor Applications

1t is believed that a good approximation to the bending moments
experienced by uniform teetering rotors can be made by combining selected
transfer coefficients from the articulated and hingeless rotor charts. The
elastic deflection of a teetering rotor contains both erticulated mode compo-
nents (resulting from odd harmonic excitation) and hingeless or cantilever
mode components (resulting from steady and even harmonic excitation).
Assuming that interharmonic coupling effects present in the articulated and
hingeless transfer coefficient charts are small and/or approximately the same
for both types of rotors, then the total response of a teetering rotor can be
obtained by simple éuperposition. This assumption may be reasonable for low
stiffness articulated and hingeless blades since their natural mode shapes
and frequencies do not differ greatly. The formal procedure for obtaining
teetering rotor bending moments from the charts is summarized below.

1. Calculate the mass and frequency perameters from the blade weight
and structural characteristics (see steps 1 and 2 of the Articulated Rotor
Applications section).

5. Determine the control parameters 875, Ac, Q> and b, from Ref. 7

or other source for the flight condition under consideration (see steps 5 and
6 of the Articulated Rotor Applications section).
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3. Obtain the odd harmonic transfer coefficients for the independent
Parameters, 9-,5 s >‘c , and 6, from the articulated rotor charts. Note that
the only blade stations consistent with the hingeless rotor charts are O and

0.55R; however, data for other stations are availsble from the tables of Part
II.

L, Compute the transfer function for each articulated mode independent
parameter. Note that the summation is performed only for the odd harmonics.

Moy = = 2 (M ) pccosny+ B, ),n,s SIND W)
n 00D

where ( ) is used to symbolize one of the independent parameters.
5. Multiply the transfer functions ﬁg,s s ﬁ)\c ,» and ﬁg‘ by the values

of the respective independent parameters to form the total odd harmonic
Fourier series of the nondimensional moment.

6. Dimensionalize by EI/R to obtain bending moment, or Ey /R to
obtain stress.

Te If the frequency for the first cantilever mode is known, use Fig. 6
to determine the effective frequency parameter. If not, use the same frequency

parameter calculated in step 1.

8. Determine the hingeless rotor controls, A,s s Bls » and Ag from the
following identities.

Ac¢ + 10 ( Ac calculated in step 2)

>
(7]
L}

9. Obtain the steady and even harmonic transfer coefficients for the
independent parameters, 8,5, Ag, 6 , A, By, and By from the hinge-
less rotor charts. Data are available for the root station and the 0.55
station from the charts and for additional stations from Part II.

10. Compute the transfer function for each hingeless mode independent
parameter.

M )= M 10~ 2 (M ) nccosny+™M . gsinny)
NEVEN

_ 11. Multiply the transfer functions h737 s ﬁ)‘s s MG, ’ ﬁAu ’ MB.’ and
M3, by the values of the respective independ’ent parameters to forfm the ‘total
even harmonic (including steady) Fourier series of the nondimensional moment.
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12. If the frequency parameter was obtained from Fig. 6, solve for the
effective EL/R from the frequency parameter as described in the Nonuniform
Hingeless Blade Application section. Using this value, or the actual EI/R
if the blaede was uniform or the first hingeless mode bending frequency was
unknown, multiply by M(,, to obtain the bending moment. Alternately, multi-
ply M ,by Ey/R to obtain stress.

13. Add the results from steps 6 and 12 to form the total teetering rotor
bending moment Fourier series for each blade station desired.

It should be noted again that this technique is only an approximation to
teetering rotor moments because of the previously mentioned interharmonic
coupling assumption. Evaluation of the accuracy of the method through compar-
ison with experimental results or results of other, more complete, analytical
methods was beyond the scope of this study.

CONCLUSIONS

1. For unstalled conditions, the flapwise bending moments for an
srticulated rotor blade can be expressed as a linear function of the indepen-
dent perameters: collective pitch, blade twist and inflow ratio. Additional
independent parameters for a hingeless blade are cyelic pitch and preconing.
This linear representation lends itself to transfer function, superposition
techniques which provide a simplified procedure for analyzing the pending
moment problem.

5., The transfer function approach in combination with the performance
charts of Ref. 7 yields accurate flapwise bending moments for low stiffness
articulated and hingeless rotors operating at advance ratios between 0.25 and
0.5. In this advance ratio range, the influence of blade chordwise and
torsional response on flapwise moments is small.

3. Above an advance ratio of 0.5, the increased sensitivity of the
results to small errors in the independent parameters determined from Ref. 7
reduces the quantitative accuracy of the transfer function approach. In
addition, the approach cennot be expected to yleld reliable results for those

blade designs which may experience large torsional deflections at high advance
ratios.

4. In computing trimmed moments for hingeless rotors, residual first
harmonic components resulting from small errors in the independent control
parameters do not significantly affect the steady and higher harmonic moments
acting on the rotor blades and can be neglected.
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5. The transfer coefficient design charts developed specifically for
uniform blades can be used within reasonable limits to obtain preliminary
results for blades having nonuniform spanwise characteristics.

6. An approximate analysis, based on a simplified aerodynamic theory,
provides closed-form transfer coefficient expressions which are qualitatively

accurate and useful in gaining insight into the mechanisms by which helicopter
blade flapwise moments are produced.
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APPENDIX A

AN APPROXIMATE METHCD FOR OBTAINING FLAPWISE
MOMENT TRANSFER COEFFICIENTS

By Peter J. Arcidiacono
United Aircraft Research Laboratories

Articulated Rotor

It is shown in Ref. 14 (pgs. 95-98) that the nondimensional response of a
rotating blade normal to its plane of rotation can be expressed as & series
summaetion of natural radial shape functions (mode shapes), Yw » suitably
scaled by time-dependent generalized coordinates, qy » &s in Eq. (A1)

@®
T(Fy) = 3 % (Flaw (V) (A1)

In such a situation, the differential equation of motion for the blade can be
expanded (see Ref. 1, pg. 95) into a series of dynamically uncoupled
equations - one for each mode - of the following form:

Ry P

where Sa is the nondimensional aerodynamic force per unit span normal to the
blade span. Following the development of Ref. 15, pg. 189, Sa can be
expressed as:

_ R
Sp = w)———ﬁ‘r-)'éo((@uf + upuT> (A3)

It will now be assumed that stall, compressibility and reverse filow effects
may be neglected so that the 1lift curve slope, @ , may be considered constant.
The total pitch at any blade station can be expressed in terms of the collec-
tive pitch of the 75% radius station, 6,5 , the linear twist rate of the
blade, 8, , and the cyclic pifch angles introduced by the control system, Ag
end B, , as
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®=8,5 - A_cosy - B_siny + 6 (7-075) (Al)

Also, the nondimensional velocity components ( up and uy ) defining the local
section angle of attack of a flexible blade can be obtained directly from
those derived in Ref. 15, pg. 188 for a rigid blade by substituting the

X
flexible blade velocity, 7 = Z Yw. qW , and slope, (7_) z Yw qw , for their
xizl ! 121

rigid blade counterparts: T B and 8 . The resulting expres51ons for Up and Ug
are:
w X m !
Up = A - X Yy Qw T MT Yudw COS ¥ (45)
1= HES
Up =T +u siny (A6)

Substituting Eqs. (Al) through (A6) and defining

| 2
Sy [ Wor o (A7)

Eq. (A2) becomes

()(Ci(wi + u‘)w? Qwi>C|i = (PCO ) f Crw. {[ - AIs cos ¥ - Bls sin ¥

2m0

+ 8(F - o.75)](?2 + 2u7 sin ¥ + u? sin? y)
® , (A8)
+ (F + p sin W)(xs - "Z' rwi/awi, - fl’f' YW:/ qwi/
= =

cos w)} ar - [Bv Yy.§ dF
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It is convenient at this point in the derivation to recognize that an
articulated blade having zero flap hinge offset has a rigid body mode commonly

referred to as the flapping mode.

Thus, Eq. (Al) can be written as

s .78 %) 2
= + ~ 7
z ' izl Ywi q“'i T8 + igl K qu
and (49)
X X ~ _é % X
L i:lywi Qw, ~ rE+ =1 Ywi qWi
Z:2Zy,q, =B+ ‘-S: i Ow

where the subscript i

in Eq. (A9) and hereafter in this analysis is now

taken to denote the flexible blade modes only.

Note also that in the final

form of Eq. (A9) the flexible blade response has been assumed to be represented
adequately by only two modes. By substituting Eq. (A9) into (A8) and assuming
a constant chord blade, ( T = 1), the basic equation of motion governing the
response of the blade's ith flexible mode is

- A, cos ¥ - By sin ¥

(P;%()) f Tw {[

9 (7 -O?S)]( + 2u7 SinY + I-L sin2 4’)

(xq,(wi + G’wzi QWi) Cli

+

(A10)

+

rB + Z YWIQW>

l-l

(T + p sin y) -r(
2
iZ:|7wi,5wi,)

- Fu COS \V(B + Z Yw,qw>

l:l

X
@ Sin W(FB +

2
H

2
pC R

0 8 - =
"( )O/O Ywigdr

2mg

2 1
sin 2'#(,8 + Y yw,,qw.)} ar
=1 v
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To obtain & simple closed-form solution to Eq. (A10) the following
assumptions are made:

(a) The flapping motion of the blade is known in advance from previous
~ analyses such as that of Ref. 7,

(b) The flexible modes are uncoupled aerodynamically so that terms such

X 2x
as Ywi -'Ywi,qwi, can be approximated by 7\#, qwi ’

(¢) The time-varying aserodynemic spring and damping terms due to blade
/
flexibility (such as #Ywi, Q.- COS ¥ ) can be neglected,
]

(d) The gravity term, g , can be neglected as second order.

With these assumptions, Eq. (Al0) is

B 2 - X
)Q‘/;wai ar qwi

_2 PCoR
(ﬁlwi T O, qu)C'i * ( 2(f)no

PR 8 ,
= (Zmo 0[ Yw. [9.,5—A, cos ¢y - B, sin y
(o] i s S (A11)
+ (7 - 0.75)](?2 + 2fp sin ¢ + [LZ sin? 4/) + A (T + 1 sin y)
2 X =B o F "2[3 sin ZW}d?
- T B - uvB siny - utB cos V-5
By representing the flap angle as & Fourier series
3 i 2
= - +
B = ag na (O"s cos ny Dpg SN nw) (A12)
defining the constants,
B ko
L= [ v 7" OF (a13)
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B
I, =f° ng? ar (A1k)

and noting the relationship between shaft axis and control axis quantities for
a zero offset rotor (from Ref. 15, pg. 168):

b = b, - A
s (A15)
02 = Gz
b, = by,
Ae = Ag— p By
Eq. (All) can be expressed as
_ 2 PCOR
(ax‘"i O q"‘i>c'i * (_2%0_)0 o, du
PR .
= (7?1.,-3-)0 {Ac (I,i * #Ig,; sin V)
2
+ 65 [Tp; + 20 I sinv + & Io; (1 - cos 2y)]
(A16)

2
. 7
+ 8 T3 - 078 I, + 20 (T, - 075 L) sin¥ + 5 (I
2
- 075 Io;) (1 -cos 2v) + oo(-y I, cos ¥ - = Ig; sin 2\4/)

2
+ q ["(Iz,i" _‘_‘I_#z Io,i> sin y + K I ;cos 2y + -4ﬁ To,i sin 3\4/]

2 2
+ b [(Iz'i + _‘f‘i Io,i> cosy +puI; sin2y - -% Ipjcos 3\4']

2
+ 0y [~2T, sin 2% + T Iy cos 3¥ - I cos ¥ + 4 Io; sin V]

+ by 2, cos 2¥ + F p Iy sin 3y -5 I, sin v

n

+ 7 Io; (I - cos 4\4/)]
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Now, in the absence of stall, the various flapping coefficients can be
shown to be linear functions of 875 , 6, , and A (see Ref. 8) and can be

written in the following form:

00-

Substituting Eq. (Al7) into Eq. (A16) and definin
and model damping ratio as

Eq. (A16) can be written as

C
— N /o = _ _
(MPa ( qwi + 2’fi “’wi Qwi + wwi qwi)

BI +?')‘

4
F. G F.
n Z:O [< 1,9-,5,n,c 75 * F'lepnrc e

+ (Fi,O.,s,n,se?s + Fi,el,n,s + Fi.,kc,q,s xc)
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g the blade mass parameter

(A18)

(A19)

(A20)

ne Xc> cos ny

sin nw]



where the nondimensional force coefficients are defined as follows:

— F?- 2

Fi:97sp1c ) Iz’i + 2 IO‘ + b2975 4 101‘

- M P-Z

Fi,en,l.c = -02975 - Lt b|975 (Iz,i + 7 Io,) - 00975 pI
Fi,975,21c = - T Io’i + b2975 2 Iz’i + 01975 n I'yi

F = .- b Lz I..

Fi,975,3,c - 02875 ‘%‘ [ Il,l '875 3 —o0,

Fi,e75,4,c. == b2975 2 ZLoii

Fi,975,o,s =0
n ul
F. = -Q02 2I,i + b ,U-I]i"co ﬁIOi
WOrsi2cC b5 b2s" " 875 2
- 2

= 2 . H )
", 875.3: b2975 2 i 9. & Lo

F - Iz
Fiie75|4’s - 02875T IOl
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- “2 F-2
Fi,gl ,0,C = I3 - .75 Iz,i + 7 (I‘,"‘ .75 IO,I) + bze I..

rEi,B,,l,c = ‘023l'§ L+ blgl (Iz,i" %Io,i> ‘,009|/-‘I|,|
Figu2c™ = %.(Il,i— 78 Iy + b23' 2L, + Ouell*Il,i
’:"l,el,s,c = 0291 %#Il,i - blel % Lo,i

Ei,e, 4c ='bzal % Lo,i

Fi,8| 5. =0

2
= _ B K
Figus = 2k (T = 75T, ~b2g 7 Li- °|e'<Iz,i T Io,:)

2
- - _ # )
Figes = ~ °29| 2Izi+ blel rL 008, 7 Lo

2
= . 3 n
Fi,6,3s = b29|?l‘-1|,i + % & Lo,

= g
Fi,9|,4,5 = 029| 4— Iov!
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= 3 K

Fixe,3.c = °2Xc S prLi- b|)‘c a Lo

= pé

FidedC ° 'bzch Lo, (a23)

Fidei0.8
Fans = ploi-bay 5 2
idchs = # Lo bzxc'Z' L - oy (T2i = 7 To
2 £
Fing2s = ~02, 2T2j + by wIji - 00\ 7 Tai
= - 3,1, Ll
Firgds = b"’xc zrhi T 9 9 Toi

2
= - L 1
Fagths = %2, 4 Toj

Equation (A20) can be solved in a straightforward menner by assuming &
solution of the form:

4
q, ° 8 + 8 + A -
+ 6. + 8 + i -

(qw‘1875vn5v & qwirepn:s : qw‘ >‘c N,C )‘c> s (n‘# ¢i,n)]
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Substituting Eq. (A24) into (A20) and employing simple vibration theory
(e.g., see Ref. 11, pg. 73) yields the following expressions for the various
qy coefficient in Eq. (A24):

—

F A
bl hn,e Bin
T e (A25)

qw. ~ 2 i
NN N w, C
i w, Ct /(MP)o

l:i()nsAin

q“’i,( ),n,s aw?c,,/(MP)o
[

(426)

The dynamic amplification factor, Ain » and the phase angle by which the
response lags the excitation are given by Eqs. (A27) and (A28), respectively,

Ain = (a27)
! 2 2
L 2 N 2g;n
2 o
wwi %
2&n
¢ = tan™ (A28)
) _ n2
wwi <l - ——m 2
Wi

It is now desirable to express the blade response in terms of a Fourier

series referenced to ¥ = 0 and employing a sign convention compatible with
well established helicopter notation, i.e.,

Qw; * awi ,875,0 875 + awi 'glpe, + Gwi',\c'o Ac
4 (A29)
‘nZ, [(q‘”i 87snc B5% Qwi g nc b +Qwi ), ,n,ckc) cos nW]

_n=l [(awia%smgs 875 + awi,ennts 9' +.q_wi,Xc,n,5 )‘C )S|n n#’]
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The 6w coefficients in Eq. (A29) are related to the qy coefficlents in
Eqs. (A25) and (A26) by the following equations.

awi‘( 50 = Awi ()0 (a30)
Qwi (e = ~Qwi()n,c COSPi,n + Qwi,()n,sSiNP;,q (A31)
Twi (s = ~Awi()nc sing N —9wi(ins C°$¢i‘n (A32)

where ( ) indicates 8,5, 8, , or A as the case may be.

Finally, the nondimensional flapwise moment at any radiel station on the
blade can be expressed in terms of the response coefficients of Egs. (A30)
through (A32) as follows:

—_ MR 2 2 - - -
M= ﬁ_— : -2| Ywi”qwi : -z' rwi” {qwire75n° 975 * qwi'el’o 6' ¥ qu’xc’o Xc
iz i .
4 _ - (A338a)
—nf;l [(Qwi B75,0C 67s +QWi'9',n,c 6+ Qw; B U, K- )\c)cos ny
+ (Tw; Bgns 675 +Owi gns 81 + Awi A s Ac ) sin n\y]}
An alternate expression for M in terms of nondimensional bending moment
transfer coefficients can be defined as:
M = h—‘675 0 675 + ﬁe,'oel + mxc,o)‘c
(A33p)

4 - — -
-3 [(Me.,,,n,c 675 + Mg, ,nc 6, + ch,n,ckc) cos ny
n=

+( iiB"Sv’hs'e?s + -M-elvnrs e' + ﬁkhnysxc )Sin‘ n l"]
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Equating like trigonometric terms in Eqs. (A33a) and (A33b) vields the

following final expressions for the desired flapwise bending moment transfer
coefficients.

V] : % 7"
(),0 ,zl wi qu,( ),0
i=
M()n,c : é.’wa"ﬁwa.( )nc (a3h)

— 2 -
M(),n,s = .Z‘ Yoi" Qw108
i=
where, again, ( ) indicates 875 , 8, , or A\ as the case may be.

Hingeless Rotor

The derivation of the flapwise moment transfer coefficients for the
hingeless rotor follows generally that described previously for the articulated
rotor. One basic assumption which differs for the hingeless rotor is the
assumption that the first mode response for low stiffness hingeless rotors can
be approximated by the flapping mode response for an articulated rotor. With
this assumption, the equations of motion are solved to obtain the response of
the second hingeless mode. Details of the procedure follow.

The nondimensional displacement of s hingeless blade having a fixed
built-in coning angle Bg is

- 2
Z = FBB + %l)’wlqwl% "BB + iZ)’w‘ qwi (A35)
1= = |

The first bending mode ( i = 1) response is now assumed to be essentially a

rigid flapping mode whose motion is referenced to the undeformed position of
the blade. Thus:

Yw.qw. = F(B ’BB)

Substituting in Eq. (A35) gives

Z- FB + YW2QW2 (A36)
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where B 1is assumed to be given by Eq. (Al2). The basic equation of motion
for the second hingeless mode is given by Eq. (A10) modified to include the
bending moment produced by the combined effects of built-in coning and
centrifugal force. The modirication to Eq. (A2) is developed in a straight-
forward manner from the analysis of Ref. 1l by noting that the flexible mode
of a hingeless blade is no longer orthogonal to the function MT . The
resulting 2nd mode equation is

x B __ _ B _ _ _ I _ _
(Guz + DufOuz) | Mou2d = [ Y (Sa - )07 - B [T n,dT  (a37)

With the definition of Z given in Eq. (A36), the Eq. (A5) tekes the
following form:

- X
Up = As —TB = Yy w, — (B + Ywjau,) COS ¥ (a38)

Substituting Eqs. (A3), (Ak), (a6), (A7), and (A38), assuming constent
chord, and neglecting gravity as before, Eq. (A37) can be written as

qQ 5 PR B ,
(QWZ + wwzz qwz )C|2 = <—Tc|).no—>ﬂj; )’wZ { [(875 - A, cos y —B|s siny
+6,(7 -0.75)] (F+ psing)? + (F+ g sin \p)[ As—TB —yw2aw2 (A39)

—1(B + Ywy'qw, ) cos y ]}d?

If the time varying qw2 spring and damping terms are neglected, Eq. (A39)
becomes :

xx — PCOR X 8 _ —
(dw, + Gw,?Aw, )Cip + (W)quzf; T Yup” dF

pCoR ) B ,
: ( g oj; Yw, {[(975 —A,CO8 ¥ —Bigsin V) o)

+6,(7 —0.75)](F +Hsiny)? +(T + Hsiny)(As-TB - #/.';‘cos w)}d'r‘
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This equation is identical to Eq. (All) developed for the articulated rotor
with i set equal to 2. The solution to Eq. (ALO) is thus the same as that to
Eq. (All) so that the results given by Eqs. (A21) through (A32) are all
applicable provided that i is set equal to 2 and that Yw and its derivatives
correspond to those for the second hingeless mode.

The flapwise moment equation applicable to the hingeless rotor as
represented in this analysis is

MR

M 1 leu (B"Ba) + 7,

2” Qw,
4 .
: ywlu-[oo —nz::' (Gns cos n\" + bns SN nW) _ BB] (A)-I-l)

— 3 _ = ,
+ Ywy [sz'o —nZ (Quy , o COS AV +Qqu, ¢ Sin NY )]

Using Eq. (A15), (A4l) is:

™M = _€|B = Y, [ao-ﬁe -(0)-Bis)cOsY - (b, + Ag) siny
4 s
- 2, (0n cOS 0¥ + bn sin n‘#)] + 7w, [awz'o =2 (Qup e COS Y (ak2)
+ Gy, g SID nw)]
Finally, substituting Eqs. (Al7) and (A29) ( i = 2) yields the following

expression for M !
= . MR _ u[ P re — B
M = 1 YW| 00975 975 + 009' 1+ Go)\c c 8
- (ola.,5 975 + Olgl 8, + OQCXC - Bls) cos ¥
— (big, 075 + big 8 + by Ac + Ass) sin ¥
4
_ng:z ((On375975 + 0n8'9| + Onchc) cos ny
+ (bng,sb7s + bng,61 + bny, Ae) sin nq,)] (A43)
+ Yui [Quaors,0 O7a + Twag0 81 + Gwenco Ac
3 A 3 -—
-n§| <(Q\~z,a,5p,c 975 + qu,el’n'c el + qu,Xc,n,C Xc ) cos n\‘l

+ (C—lwz,875,n,s 875 + Guw, .60, 81+ qwz 2. .n,s Ac) sin nW)]
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Expressing M in the general format of Eq. (A33b) as

M = 'ﬁe.’&oen + ﬁe"08| + ﬁ)‘c,o Ae + HBB,O Bs + ﬁms ,0Aig + ms,s,oans (k)

4 — — _ —_ —_
_nZ, [(Men'":c 875 + Mg, nc 81 + Mx, nche + Mag,nchis + Me.s,n,cB's)Cos ny

+ (l\'ﬂen,n,s 875 + M8 ns8 + Mrgn,she + Magns Ais + me,,,n,sa.s)sin n\}]

and equating like trigonometric terms in Eqs. (A43) and (Alk), yields the

final expressions for the nondimensional bending moment transfer coefficients
for the hingeless rotor. Note, in order to eapress the results in conventional
hingeless rotor terminology ()\s_ instead of Ag¢ ), the following identities
were used:

A = )‘s-pB,s
2 A u
LR T- N

— X - -—
= _ M . M % _ oM _ , oM
Ma, = 9B, " 0% 38 ~ 0B < X o

The resulting coefficients are:
-— _ n + "=
Mo = 7w, Go() ¥ Yw, qu‘( ),0
— H=
M()ic = Yw:ldl( ) ¥ Ywo Qwz ()ic

— 1 H =
MOL2e = Yw, 020) + Ywp Qwp ()2.c

— - N =
M()3,c = Y, O30) + Ywp Qwa )3c

— - 1 1=
M(rac = Yw G40) * Ywz Qwz (14c

_ B . (ak5)
MOLs = Yw by + Ywp qwz'( )18

- " "=
M)2s = Yw, b2y + Ywp QwZ’( 22,5
M yas = Yw D3y * Ywp0

038 - Tw 230) T Twalwaiyas

- 1" e
M( 148 = 7w|b4() + Ywaqwz,( )45

Mggo = - ‘le|l
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~

M = 1

- N B v-
Mals.l,c h y“l FM)‘S"'C

_ .
MB,g,n#l.c l‘ngl Agine

mals,n,s = 'f‘zn: M,

stMS

In Eq. (A45) the subscript ( ) indicates 825 5 6, , or X\g as the case
may be. Also, to reiterate, the "a" and "b"™ flapping coefficients are assumed

to be known from Refs. 7 or 8 and the ﬁwz 's are given by Egs. (A30) through
(432).
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APPENDIX B

UAC NORMAL MODE TRANSIENT ANALYSIS

The transfer coefficient charts presented in Figs. 52 through 177 were
computed using the UAC Normal Mode Transient Analysis (referred to as computer
analysis in the text and figures). This analysis was also used to provide
bending moment and stress results which were used as a standard against which
the accuracy of results obtained using the charts could be evaluated. A brief
discussion of the analysis is presented below. A detailed description of the
equations of motion used is given in Ref. 1.

Method of Solution

The computer analysis constitutes a numerical method for solving the
differential equations governing the fully coupled flapwise, edgewise, and
torsional response of flexible rotor blades. A normal mode approach combined
with a finite difference, step-by-step integration of the equations is
employed. The former is widely used throughout the aircraft industry and
assumes that the deflections of the rotor blade can be represented by summa-
tions of the blade's natural vibratory modes. Although an elastic body has
an infinite number of such modes, the normal mode approach owes its success
to the fact that only a relatively small number of modes is generally required
to adequately approximate the elastic deformations of interest. The use of
normel modes also results in certain simplifications of the equations of
motion (such as elimination of certain dynamic coupling terms) thereby
facilitating the solution of the equations through numerical integration
techniques on a digital computer.

Technical Features of the Computer Analysis

The analysis has the following capabilities and advantages:

1. The program includes the effects of up to 5 flapwise, 2 chordwise,
and 2 torsional elastic modes as well as the flapping and lagging rigid body
modes for an articulated rotor.

2. The chordwise and torsion modes can be suppressed to permit applica-

tions for which only the influence of the uncoupled flapwise modes are of
interest.
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3. The computer program can be applied equally well to blades having
many types of root-end boundary conditions by simply providing as input the
appropriate mode shapes and natural frequencies. Any degree of hinge restraint
from fully articulated (with flapping hinge offset) to rigid in either the
flapwise or chordwise direction can be studied and both lag hinge dsmping and
control system flexibility can be included.

L. The elastic deflections of the rotor blade and the aerodynsmic forces
generated by it are fully coupled. Aerodynamic forces in the blade equations
can be considered to be composed of (1) components independent of blade motion
(forcing functions), (2) components dependent on blade deflections (spring
forces), and (3) components dependent on the rate of change of blade deflec-
tions (damping forces). Analyses which do not couple blade deflections and
blade loads, therefore, consider only the first of these three components.

At high forward speeds the contributions of the coupled aerodynamic loads
become increasingly important. It has been shown, for example, that the
flapping instability of an articulated rotor cannot be predicted unless these
effects are considered. It is also apparent that the equivalent aerodynamic
spring constants and damping coefficients in the second and third components
are dependent upon blade azimuth angle and rotor flight condition. For example,
twisting of the rotor blades in reversed flow can produce effects on blade
loads which are opposite to the effects in conventional flow. Also, aero-
dynamic demping, which is closely related to airfoil lift-curve slope, will
change markedly when either stall or compressibility effects are encountered.

A primary advantage of the numerical method of solution employed in the pro-
gram is that it takes full advantage of the capabilities of a high-speed com-
puter to include all of these coupling effects in a straightforward, physically
meaningful manner,

5. The computer program can be used to compute time histories of blade
motion even when such motion is unstable. Such conditions of instability or
near-instability can exist at high advance ratio flight conditions where either
retreating blade torsional divergence or blade flapping instability imposes a
limit on maximum speed.

6. Dynamic coupling forces between the flapwise, chordwise, and
torsional degrees of freedom have been included.

T Airfoil 1lift, drag, and pitching moment data at angles of attack
from O to 360 deg and at Mach numbers from O to 0.9 are employed (see Ref. 7
for 1ift and drag data used).

8. Very high frequency blade response in the Primary modes can be

predicted. This can be particularly important at high forward speeds and low
rotor speeds when the entire blade enters the reversed flow regime,
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APPENDIX C

DETERMINATION OF PARAMETER VALUES
FOR SENSITIVITY STUDY

The factors considered in arriving at parameter values for the reference
blade and ranges over which the parameters might bve expected to vary are
discussed below.

Mass Parameter

The values of mass parameter,

MP = pCoR/2Mg (c1)

were determined by selecting a reference value typical of existing blade
designs, and considering practical variations based on probable variastions of
aspect ratio and altitude that might occur. Several existing articulated and
hingeless blade designs were examined to establish the reference mass param-
eter. Although these designs were not all inclusive due to the limited amount
of detailed blade data available, they are believed to be representative of
modern blade designs. Blade aspect ratio ranged from 15 to 21, and mass per
unit length at the 55% radial station from 0.35 to 0.78 1b/in. The mass
distribution of these blades over the outer 70 to 80% of the radius was found
to be fairly uniform, with local variations generally not exceeding plus or
minus 10% of the average (except in the vicinity of the tip and root). For
example, the weight distribution for a Sikorsky H-34 blade is presented in
Fig. 23. The mass parameter values of these existing blade designs (for sea
level standard conditions) range from 0.18 to 0.32 with most lying between

0.28 and 0.32. A reference mass parameter value of 0.3 was therefore selected.

The reference mass parameter selected differs from that of the blade used
in Ref. 7 which, on the basis of the information quoted in that reference, is
estimated to have a mass parameter of 0.23. This value is not representative
of typical blade values unless rotor operation at approximately 7000 ft (as
opposed to sea level) is assumed. The use of a reference mass paraméter of
0.3 in the present investigation implies operation of typicel blades at sea
level and is believed Jjustified by (1) the wider interest in such operation,
and (2) the fact that results of the type presented in Ref. 7 have been shown
in Ref. 8 to be insensitive to wide variations in Lock number (and hence mass
parameter, see Eq. (13)).
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A relation between mass parameter and aspect ratio (AR) may be obtained
by assuming constant air density, £, and geometrically similar blades made of
the same material. The mass per unit length is then proportional to the square
of the chord, and the mass parameter may be expressed as:

R R
mp = - f -~ =( P )(AR) (c2)
2my KmoCo Km,

Thus, for similar structural design and material, the mass parameter is pro-~
portional to aspect ratio. Typical aspect ratios of current designs are
between 15 and 21. Aspect ratios below 10 are not likely unless one is
considering stowed rotor configurations, while aspect ratios greater than about
25 are not likely because of static stresses. Assuming 19 to be a typical
aspect ratio for the reference mass parameter of 0.3, and a probable aspect
ratio range to be 10 to 25, the following mass parameter variation results:

Aspect ratio - 10 19 25
Mass Parameter - 0.16 0.3 0.4

Since MP is also directly proportional to air density, mass parameter
decreases with increasing altitude for a given blade. For example:

Altitude (ft) - O 10,000 20,000
Density ratio - 1 0.7h 0.53
Mass parameter - 0.3 0.22 0.16

From these considerations, the mass parameter values for the sensitivity
study were selected as 0.1, 0.3, and 0.5.

Frequency Parameter

~ The values of frequency parameter,

FP = EI,/mdfR)2R2 (c3)

selected for the sensitivity study were determined by choosing a reference
value typical of existing blade designs, and considering practical variations
based on probable variations of aspect ratio, material, blade thickness ratio,
and rotor -tip speed.
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The same set of existing blade designs used for the determination of mass
parameter were considered to establish a reference frequency parameter value.
The blades considered were of aluminum spar construction and normally operate
at tip speeds of 620 to 700 ft/sec. Their flapwise area moments of inertia
range from 0.7 to 7.2 in.h at the 55% radial station. Variations in inertia
from the reference value were generally within 25% of the average values
except near the root. The frequency parameter values of these existing blade
designs range from 0.0019 to 0.0028. A reference frequency parameter of
0.0025 was selected.

An alternate expression-for frequency parameter involving aspect ratio
cen be derived if one again assumes geometrically similar blades of the same
material. For such blades, the moment of inertia and mass per unit length at
the reference station is proportional to the fourth and second power of the
chord, respectively. The frequency parameter may then be expressed as:

4
FP = E “zoC0 - “o E | (oh)
(QRIZR?  KmLd Km, | (QR?| (AR)?Z

Considering the aspect ratio range from 10 to 25, the following frequency
parameter variation results:

Aspect ratio - 10 19 25
Frequency parameter - 0.009 0.0025 0.00145

If new materials are considered, while meintaining & constant tip speed
and radius as well as similar structural geometry, the frequency parameter is
proportional to the ratio of the modulus of elasticity to the density of the
material. That is,

ET E
-0 ¢ — (c5)

o
Mo Ps

The following is a comparison of the modulus-to-density ratios and the
corresponding frequency parameters for (1) a composite boron-epoxy material
utilizing cross plies to reduce the modulus, (2) an isotropic metal (such as
gluminum), and (3) a high modulus uniaxial boron-epoxy composite. (Note that
the ratio of E/ps for all isotropic metals is approximately constant.)
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Material

90 deg Cross ply

Isotropic metal

Uniaxial boron-

composite (aluminum) epoxy composite
E, psi - 0.3 x 107 1 x 107 2.8 x 107
Ps , 1b/in.3 - 0.075 0.1 0.075
E/Pg, in. - 0.4 x 108 1x 108 4 x 108
Frequency parameter - 0.001 0.0025 0.01

Consideration of a new structural geometric configuration implies a
change in the inertia-mass ratio ( Io/"kQ brought about by a change in spar
depth for a given material, chord, tip speed, and radius.
values Ig and Mg are based on the 55% radial station, large increases in spar

depth are not likely because of drag considerations.
of spar depth could result in inefficient aerodynamic sections.

Since the reference

Also, large reductions

If it is

assumed that I, is proportional to thickness ratio squared and the mass per
unit length is assumed to be held constant, then the following frequency
parameter veriation results from a thickness ratio variation of 8 to 18% chord:

Airfoil thickness ratio -
Frequency parameter -

0.0011

0.12 0.18
0.0056

0.0025

Frequency parameter is inversely proportional to the square of the tip

speed.

For the advance ratios up to 0.5 & tip speed of 672 ft/sec was

selected. Major departures from this value would not be meaningful because
corresponding variations in Mach number effects are not accounted for in the

transfer functions.

therefore considered as covering the range of interest.

A tip speed variation of plus or minus 100 ft/sec is

Considering the low advance ratio range ( # = 0.25 to 0.5) the following
frequency parameter variation results if blade material, thickness ratio, and
radius are held constant:

Tip speed fps -

572
Frequency parameter - 0.0035

672 772
0.0019

0.0025

Tip speed values higher than 772 ft/sec or lower than 572 ft/sec are normally
not of interest because of forward speed limitations imposed by the advancing
tip Mach number and retreating blade stall, respectively.
the high advance ratio range ( 4 > 0.5), lower tip speed values become
Lower tip speeds were considered
for the high advance ratio range as shown in Fig. 18 and their effect is

mandatory to avoid compressibility losses.

Of course, for

discussed below.
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From the consideration of existing blade designs and independent changes
of aspect ratio, material, thickness ratio, and tip speed, the nominal
frequency parameter values selected for the low advance ratio range of this
investigation are 0.001, 0.0025, and 0.01. The additional frequency parameters
of 0.005 and 0.015 were included in the sensitivity study. Although combined
variations of aspect ratio, material, etc. could be made to produce frequency
parameters greater than 0.0l, the structural stiffness of the resulting blades
would start to become large relative to the centrifugal stiffness. Consider
tion of such blades falls outside the scope of this investigation. It should
be noted that in the low advance ratio range ( M < 0.5), where the rotor tip
speed is constant, the frequency parameter for a given blade design is also
constant. In contrast to this, at higher advance ratios the frequency param-
eter for a given design varies with [ Dbecause of the tip speed variation.

To allow for this, the frequency parameters found to be representative in the
low advance ratio ratio range were simply ratioed according to the following
relation to define the values for the higher K 's.

2
nR#Sb
FPuss = Fluss QR.> 5
R { ) 2
<.5 (I+
: FPucs p< £ (c6)

aM, 90

cp 672(1+m) 12
kS5 1T117)(09)

2
FP;.LS.5 (04468)(' +p.)

The actual values of frequency parameter used at the different advance ratios
considered are presented in Fig. 19.

Tip Weight Parameter

One of the variations from a uniform blade design that was considered
involves the addition of & tip weight over the outer three percent of the
blade (as shown in Fig. 4). To nondimensionalize the tip weight, a new blade
design parameter was introduced called tip weight parameter (TWP). The tip
weight parameter is defined as the ratio of tip weight to blade weight; that
is

w
T™Wp = —UP (c7)
WeLADE
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The tip weight affects the blade mass distribution but not the stiffness
distribution of the blade. The following five tip weight parameter values
were selected for investigation:

TWP = 0.0, 0.05, 0.15, 0.3, 0.5

The last two values are probably unreasonable from s practical viewpoint
(unless tip mounted engines are considered) and were included to provide an
appreciable range in the sensitivity analysis. The mass distribution
corresponding to the tip weight parameters selected are presented in Fig. 4.

Wall Thickness Parameter

The second departure from a uniform blade design consists of a simulta-
neous change in mass and stiffness distribution resulting from linearly taper-
ing the spar wall thickness, as illustrated in Fig. 3. The ratio of wall
thickness at the blade tip to wall thickness at the blade root was defined
as the wall thickness parameter (WTP),

Wrip

WTP =

(c8)

Waoot

Only wall thickness parameter values representing conventional thickness
variations (thickness decreasing toward the tip) were considered. Specifically,
the following values were selected:

WTP = 0.0, 0.5, 1.0

The value of 0.0 probebly does not represent a practical design, and was
selected principally because it is an sbsolute limit on WPP. The mass and
stiffness (inertia) distributions corresponding to the above WTP values and
referenced to the 55% radial station are presented in Figs. 4 and 5. In
computing these distributions, thin wall spars (wall thickness small compared
to spar depth) were assumed, and spar depth was assumed constant. The non-
structural mass distribution was assumed constant and equal to three-tenths
of the structural mass at the reference station. This is equivalent to 23%
of the total mass per unit length at that station and represents an average
of the existing blades considered.
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Spar Depth Parameter

The final nonuniform blade configuration considered results from linearly
tapering the spar depth as illustrated in Fig. 3. The ratio of the depth of
the sper cavity (see Fig. 3) at the blade tip to the corresponding value at
the blade root is defined as spar depth parameter (SDP),

SpP = -/ (c9)

Spar depth parameter values greater than 1.0 (inverse taper) were not
considered. The following spar depth parameter values were selected.

SDP = 0, 0.33, 0.7, 1.0

The spar depth paremeter value of 0.33 corresponds to a 6% thickness ratio
tip section and an 18% thickness ratio root section. The spar depth param-
eter value of 0.7 corresponds to a two to one variation in inertia from root
to tip. The mass and inertia distributions corresponding to the above SDP
values and referenced to the 55% radial station are presented in Figs. 4 and 5.
As before, the distributions were computed assuming a thin wall spar, a
constant wall thickness, and a constant non-structural mass/total mass ratio
of 23% at each radial station. As shown in Figs. 4 and 5, tapering the spar
cavity depth independently from the wall thickness produces & large change in
the inertia (i.e., stiffness) distribution but only & small change in mass
distribution.
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TABIE I

TABLE OF BLADE DESIGNS AND BLADE NUMBERS

Blade Design Parameters
Wall Spar
Masgs Frequency Tip Weight Thickness Depth
Parameter Parameter Parameter Parameter Parameter Blade
MP FP ™wP WTP SDP Number
0.1 0.001 0. 1.0 1.0 1 §fm I
0.0025 2 +$
TH 2
0.01 3 2 8Yd
0.3 0.001 h(Refe . f: © § o
0.0025 5 rence s g
Blade) J o »E
0.01 6 2@ T 5
0.5 0.001 7 ma e hat
l 0.0025 8 o5
0.01 9 g
0.3 0.005 10 @
0.015 1 § :
0.0025 0.05 12 o n‘u
0.15 13 0 §
0.3 1k =8
w M
0.5 ) 15 YA
0 0.5 16 E 5
m
0 { 17 et
0.7 16 3
0.33 19 =
0 20 '

2
* Listed FP values are for u<0.5. For u >0.5, FP = FP[LSO.5 (0.LL7)(1 +p)°.

FPuco.s FPus0.5

0.001 0.000447 (1 +;u)2
0.0025 0.00112 (1 +p)?
0.01 0.0047 (1 +p)°
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TABLE II

ORGANIZATION OF FIGURES FOR TRANSFER COEFFICIENT CHARTS
(a) Articulated Blades

Advance Ratio Independent Blade Design Figure
Range Parameter Numbers Numbers
67s 1to9 52 - 60
Low
(u=0.25 to 0.5) 6, 61 - 69
¢ 70 - 78
—————————————————————— —— C— ——— — — —
67s 1to9 79 - 87
High
(u=0.5 to 1.4) 6 88 - 96
Ac 97 ~ 105
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Table II (Concluded)

(b) Hingeless Blades

Redial Advance Ratio Independent Blade Design Figure
Station Range Parameter Numbers Numbers
6 1,)4,7;2’5:8;3’639 106 - 108
8, 109 - 111
Low As 112 - 114
(m=0.25 to 0.5) A 115 - 117
Big 118 - 120
Bg 121 - 123
F=0 — — — —— — L ] _—— e —
875 l)h’7;2,5)8;3,6’9 12k - 126
8, 127 - 129
High As 130 - 132
Big 136 - 138
Be 139 - 141
.—.__._._.______.._.;______.__ —— —_—
675 1,4,7;2,5,8;3,6,9 142 - 14k
6, 145 - 147
Low As 148 - 150
(u=0.25 to 0.5) Ay 151 - 153
B 15k - 156
Bs 157 - 159
r=055 p— — — — 1 ___ —_——_— o —_—_—
875 1,4,7;2,5,8;3,6,9 160 - 162
6 163 - 165
High As 166 - 168
(u= 0.5 to 1.4) A 169 - 171
Big 172 - 174
Bs 175 - 177
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Figure 1.- Typical comparisons of bending moments predicted by the computer
analysis (fully coupled) with measured data.
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Figure 2.- Typical comparisons of torsional stresses and moments predicted by
the computer analysis (fully coupled) with measured data.
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Figure 3.~ Three view illustrations of blade designs.
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Figure 6.- Concluded.

90

n
o~
L' 1o
: 4
o
~
>
4
"
2
o
A
pos
o
e
o
2
:
1
w
=
3es feses seves sneus s jase seeas sos =]
P SORE A i BOSE POSBS .
= J353 souas Sug: -t b SR
t -
: L :
G ppnh s \ :
-] IRES SRENE 0P 1 -+
S3te et ar: = : s
I ha 1 HE I < 11 1
ienne suass gau T +
$s sty teas
+ T
+ > 1t
T H
: ~ © o - ~
- - - -

]
“® ‘QILYd ADNINDIY¥J IVHUNLYN




[

i
‘
I

RIGID FLAPPING MODE

b

4

o“

i

¥
i

12

10
8
6
4
2
0

“® ‘01LVY¥ ADNIND3IYJ TVANLYN

1.0
ght parameter, wall

ickness parameter and spar depth parameter.

.8

ip weil

é

91

TiP WEIGHT PARAMETER, TWP
.4

(a) Articulated blades.

2
WALL THICKNESS PARAMETER, WTP, AND SPAR DEPTH PARAMETER, SDP

T natural frequency ratio with t

ion o
th

Variat

Figure T.




[ e

“w =
onge I The
o -
Ho ]

* 2
spuns liEss
supna N s
Subua Frei
T ;AH

H »4

mp

1

1 1t

12

“o OILYY ADNINO3Y¥L IVAUNLYN

TIP WEIGHT PARAMETER, TWP

N 8 1.0
WTP, AND SPAR DEPTH PARAMETER, SDP

4

2
WALL THICKNESS PARAMETER,

(v) Hingeless blades.

Figure T.- Concluded.

92




*OPBIQ POIBINOTIIEB SOUSISDIDI B3 JOT
SIUSTOTIFS0D Jogsueay Yo3Td SAT09TT00 uo Jo3ouwssed Ssew JO 309119

dW ‘Y3 LIWVHEV L SSYW

v’ A 0 €0-
s .m . WNOE
N
0~
0ot S
2% “SLgy S . 10~
—~
0
o~
R I L0°-
— S—
//
\\ 0
\ 10*
zo*
2 .N . MNOE
€0°

s =1 5700 =d4

-°Q aandtg
9 | A A 0
2% WRQZ
‘\
¥V
s - ‘ m&@: \‘
-
‘llll{. 0
oSy,

3avig d3LVYINDILdY WHO4INN

{1

£0°~

z0°~

Lo°—

2o’

£0°

10°

20’

ANIID14430D0 YIASNVYEL HOLId 3AILD3TGD

Qw'

$ 30 > e SL

93




ADVANCE RATIO, K = 0.5

BLADE RADIAL STATION, 7= ,55

006

.04

02

.04

.02

.06

04

.06

.04

02

06

AMPLITUDE OF COLLECTIVE PITCH TRANSFER COEFFICIENT, C075 ne UNITS PER DEG

.04

.02

0

n=0AND n=1

{ INDICATES
REFERENCE BLADE

HARMONIC, n

0OR2
10R3

n=2ANDn=3

06

«02]

T T T .06 T T T
1 B i
-7 04
’,/ . o =
//
//
- B .02}
//
//
— 1 1 1
T 2 .3 A4 .5 0 N .2 3 A4 5
MASS PARAMETER, MP
! T T .06 ] T
1 104 8 -
\\\
T ———— 2 D2 -
\; I ,—\l
005 01 ,015 i 0 .005 .01 015
FREQUENCY PARAMETER, FP
1 T Ll T .06 1 T 1 T
s 04 1
S~o . .02
[l i 1 1 1 1 1 1.
o1 2 3 4 . 0 a2 3 45
TIP WEIGHT PARAMETER, TWP
' ' T T . T T =T T
04+ -
.oz\ ]
1 1 1 1 ] 1 1 1 1
o2 oA .6 .8 1.0 0 o2 .4 R .8 1.0
SPAR WALL THICKNESS PARAMETER, WTP
T T T T K —T T T R
. 04 .
~ 02} 4
- -]
1 L i i 1 J
.2 oA .6 .8 1.0 0 Y] .4 .6 .8 1.0
SPAR DEPTH PARAMETER, SDP
Figure 9.- Sensitivity of collective pitch transfer coefficients to blade

parameters for an articulated blade.
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Figure 27.- Comparison of azimuthal stress distributions predicted by the
transfer function approach and the computer analysis at advance ratios 0.25,
0.5, 0.7 and 1.0 -- reference articulated blade (aluminum), 6;=0, T = 0.55.
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Figure 28.- Comparison of azimuthal stress distributions predicted by the

transfer function approach and the computer analysis at advance ratios 0.25
and 0.5 -- reference articulated blade (aluminum), 6; = -8 deg, T = 0.55.
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Figure 38.- Comparison of azimuthal stress distributions predicted by the
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-8 deg, T = 0.
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Figure L42,- Comparison of 1/2 peak-to-peak stress of hingeless blades predicted
by the transfer function approach and the computer analysis for advance ratios
0.25 to 1.4 -- reference blade (aluminum) and boron-epoxy blade, 6; =0, r = 0.
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Figure 43.- Comparison of ezimuthal moment distributions for a typical
nonuniform hingeless blade predicted by the transfer function approach and
the computer analysis at advance ratio 0.25 -- @1 = -4 deg, r = O.

134




HARMONIC COMPONENT, n, ¢,OR s

TRANSFER COEFFICIENTS FROM:
— CHART S
o o= am o= APPROXIMATE ANALYSIS

i -
;5,0 ¢ ORs MO,'n,conu A, M cORS

.02 .01+ 23 R
0.2 .01 1
- - TS -
2 z-" —_—
'8 —— e
0 - 0 -
—” 0 "——"/’
-, 02 -0l ]
02 Ol 1 r—
3e. 0 \f OA 0 ”’,’s
. 02— «.01b= -1
.02 01— 1
i r
3s O O fer———gpee—mee— 0 .
o —— ‘\‘s—’/

-.02 1 | 1 | J <01 I} 4 1 1 ] -1 1 1
.2 4 4 .8 1.0 0 .2 o4 4 .8 1.0 0 2 4 .6 .8 1.0
BLADE RADIAL STATION, 7
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advance ratio 0.05.
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Figure 45.- Comparison of an azimuthal stress distribution predicted using
transfer functions from the approximate and computer.analyses for the reference
articulated blade at advance ratio C.5.
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Figure 46.- Comparison of the collective pitch, twist and inflow ratio stress
contributions predicted using transfer functions from the approximate
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Figure 49.- Comparison of an azimuthal stress distribution predicted using
transfer functions from the approximate and computer analyses for a boron-
epoxy hingeless blade, 0, = -l deg, at advance ratio 0.5.
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Figure 52,- Collective pitch transfer coefficients for articulated blede 1
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Figure 58,- Collective pitch transfer coefficients for articulated blade 7
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at advance ratios 0,25, 0.4 and 0.5.
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Figure 63.-~ Blade twist transfer coefficient for articulated blade 3

at advance ratios 0.25, 0.4 and 0.5,
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Figure 70.- Inflow ratio transfer coefficients for articulated blade 1
at advance ratios 0.25, O.4 and 0.5.
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Figure T3.- Inflow ratio transfer coefficients for articulated blade L
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Figure T4.~- Tnflow ratio transfer coefficients for articulated blade 5
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Figure T5.- Inflow ratio transfer coefficients for articulated blade 6
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Figure 75.- Concluded.
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Figure 95.- Blade twist transfer coefficients for articulated blade 8
at advance ratios 0.5, 0.7, 1.0 and 1.k,
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Figure 109.- Concluded.
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Figure 110.- Blade twist transfer coefficients for hingeless blades 2, 5 and
8, advance ratios 0.25 to 0.5 end ¥ = O.
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Figure 110.- Concluded.
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Figure 111.- Blade twist transfer coefficients for hingeless blades 3, 6 and
9, advance ratids 0.25 to 0.5 and * = O.
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Figure 111.- Concluded.
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Figure 112.- Inflow ratio transfer coefficients for hingeless blades 1, 4 and
7, advance ratios 0.25 to 0.5and T = O.
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Figure 112.~ Concluded.
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Figure 113.- Inflow ratio transfer coefficients for hingeless blades 2, 5 and
8, advance ratios 0.25 to 0.5 and T = O.
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Figure 113.- Concluded.
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Figure 114.- Inflow ratio transfer coefficients for hingeless blades 3, 6 and
9, advance ratios 0.25 to 0.5 and ¥ =.0.
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Figure 115.- Al cyclic pitch transfer coefficients for hlngeless blades 1, L
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Figure 115.- Concluded.
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Figure 116.- Ais cyclic pitch transfer coefficients for hingeless blades 2, 5
and 8, advance ratios 0.25 to 0.5 and T = O,
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Figure 116.- Concluded.
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Figure 117.- Als cyclic pitch transfer coefficients for hingeless blades 3, 6
and 9, advance ratios 0.25 to 0.5 and T = O.
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Figure 118.- Bls cyclit pitch transfer coefficients for hingeless blades 1, L
and 7, advance ratios 0.25 to 0.5 and T = 0.
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Figure 118.- Concluded.
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Figure 119.- Bls cyclic pitch transfer coefficients for E;ngeless blades 2, 5
and 8, advance ratios 0.25 to 0.5 and T = O.
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Figure 119.- Concluded.
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Figure 120.- Bls cyclic pitch transfer coefficients for hingeless blades 3, 6
and 9, advance ratios 0.25 to 0.5 and r = O.
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Figure 120.- Concluded.
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Figure 121.- Preconing trensfer coefficients for hingeless blades 1, 4 and 7,
advance ratios 0.25 to 0.5 and T = O.
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Figure 121.- Concluded.
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Figure 122.- Preconing transfer coefficients for hingeless blades 2, 5 and 8,
advance ratios 0.25 to 0.5 and ¥ = O.
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Figure 122.- Concluded.
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Figure 123.- Preconing transfer coefficients for hingeless blades 3, 6 and 9,
advance ratios 0.25 to 0.5 end r = 0.
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Figure 128.- Blade twist transfer coefficients for hingeless blades 2, 5 and
8, advance ratios 0.5 to 1.k and T = O.
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Figure 138.- Bls cyelic pitch transfer coefficients for hingeless blades 3, 6
and 9, advance ratios 0.5 to 1.4 and T = O.
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advance ratios 0.5 to 1.4 and ¥ = 0.
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Figure 140.- Preconing transfer coefficients for hingeless blades 2, 5 and O,
advance ratios 0.5 to 1.4 and T = O.
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Figure 148.- Inflow ratio transfer coefficients for hingeless blades 1, k4 and
7, advance ratios 0.25 to 0.5 and r = 0.55.
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7, advance ratios 0.25 to 0.5 and T = 0.,55.
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Figure 150.- Inflow ratio transfer coefficients for hingeless blades 3, 6 and

9, advance ratios 0.25 to 0.5 and ¥ = 0.55.
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Figure 151,- Als cyclic pitch transfer coefficients for hingeless blades 1, Y
and 7, advance ratios 0.25 to 0.5 and ¥ = 0.55.

388




ADVANCE RATIO, ;1

(b) Second and third harmonics.

Figure 151.- Concluded.
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Figure 152.- Al cyclic pitch transfer coefficients for hingeless blades 2, 5
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Figure 153.- A; cyclic pitch transfer coefficients for hingeless blades 3, 6
" and 9, advance ratios 0.25 to 0.5 and T = 0.55.
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Figure 154.- By cyclic pitch transfer coefficients for hingeless blades 1, L
and 7, advance ratios 0.25 to 0.5 and ¥ = C.55.
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Figure 155.-~ Bl cycllc pitch transfer coefficients for hingeless blades 2, 5

and 8, advance ratios 0.25 t5 0.5 and T = 0.55.
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Figure 157.- Preconing transfer coefficients for hingeless blades 1, 4 and 7,
advance ratios 0.25 to 0.5 and T = 0.55.
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Figure 159.- Preconing transfer coefficients for hingeless blades 3, 6 and 9,
advance ratios 0.25 to 0.5 and ¥ = 0.55.
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Figure 160.- Collective pitch transfer coefficients for hingeless blades 1 , b

and 7, advance ratios 0.5 to 1.4 and ¥ = 0.55,
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Figure 160.- Continued.
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Figure 161.- Collective pitch transfer coefficients for hingeless blades 2, 5
and 8, advance ratios 0.5 to 1.4 and ¥ = 0.55.
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Figure 164.- Blade twist transfer coefficients for hingeless blades 2, 5 and
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Figure 165.- Blade twist transfer coefficients for hingeless blades 3, 6 and
9, advance ratios 0.5 to 1.4 and ¥ = 0.55,
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Figure 175.- Continued.
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